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Abstract
We investigate the applications of preservation theorems in showing inexpressibil-
ity results in FO.
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1 Introduction

Preservation theorems have been an important area of study in model theory. Preserva-
tion properties talk about collections of first order (FO) structures which are preserved
under model-theoretic operations. Preservation theorems, an important class of results
which study the relationship between syntax and semantics,attempt to syntactically
characterize preservation properties. One of the earliestpreservation theorems is the
Łoś-Tarski preservation theorem which states that over arbitrary structures a FO sen-
tence is preserved under taking substructures iff it is equivalent to aΠ0

1
sentence - a

sentence which does not use any existential quantifiers [1].In dual form, over arbi-
trary structures a FO sentence is preserved under extensions iff it is equivalent to aΣ0

1

sentence - a sentence which does not use any universal quantifiers. In [2], we investi-
gated a generalization of the “preservation under substructures” property - a property
which we call as “preservation under substructures modulo finite cores” and obtained
a syntactic characterization in terms ofΣ0

2
sentences for FO definable properties. We

refer the reader to [2] for details. In this short article we intend to explore the appli-
cations of the above two preservation theorems and some related results in showing
inexpressibility results in FO. Inexpressibility resultsin FO have always been of great
interest since they show the limits of the expressive power of FO. These results are typ-
ically shown using Compactness, Ehrenfeucht-Fräisśe games or locality arguments. It
is then interesting that preservation theorems can providea different approach to these
classical results.
We clarify at the outset that the properties we consider are those of arbitrary structures
(i.e. finite and infinite). We are yet to investigate how our results can be used to show
inexpressibility results in the finite. Also we will be considering properties of structures
of purely relational vocabularies.
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2 The tools

We refer the reader to [2] for the notions and notations. We denote byPS, all those
classes of structures that are preserved under taking substructures and denote byPS
the FO-definable subsets of it. We denote byPSCf , PSC andPSC(k), all those
classes of structures that are preserved under taking substructures modulo finite cores,
modulo bounded cores and modulo bounded cores of size atmostk respectively and
denote their FO-definable subsets byPSCf , PSC andPSC(k) respectively. ByΣ0

k

(resp.Π0

k), we mean sentences in PNF whose quantifier prefix begins witha ∃ (resp.
∀) and consists ofk − 1 alternations of quantifiers. We callΣ0

1
sentences asexistential

andΠ0

1
sentences asuniversal.

We now state explicitly the results that we will use.

Theorem 1 (Łoś-Tarski) A FO sentenceφ is inPS iff it is equivalent to aΠ0

1
sentence.

Theorem 2 (Theorem 2, [2]) A sentenceφ ∈ PSCf iff φ is equivalent to aΣ0

2
sen-

tence.

Lemma 1 (Lemma 2, [2])PSC = PSCf .

3 Inexpressibility using Theorem 1

3.1 The class of all finite structures

Suppose this class, sayC, was axiomatizable by a sentenceφ. Observe thatφ ∈ PS

so that by Theorem 1,φ is equivalent to aΠ0

1
sentence. Then¬φ is equivalent to a

Σ0

1
sentenceψ. Now ψ, being aΣ0

1
sentence, has minimal models of finite (in fact

bounded) size. Thenψ and hence¬φ has a finite model. But this model must satisfyφ
- contradiction.

3.2 Cycles

Suppose the classC of graphs containing cycles is expressible using a FO sentenceφ.
Then the models of¬φ form the class of trees - which is preserved under substructures.
Then by Theorem 1,¬φ is equivalent to a∀k sentence so thatφ is equivalent to a∃k

sentence. Thenφ forces the girth of the graph to be atmostk. Then a cycle of length
k + 1 violatesφ but is present inC.

3.3 Bipartiteness

A finite graph is non-bipartite iff it contains an odd length cycle. This result can be
seen to be true even if the graph is infinite.

Lemma 2 A graphG is bipartite iffG has no odd cycles.
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Proof: If G is finite, we are done. Consider the case thatG is infinite. IfG is bipartite,
then clearly,G cannot have odd cycles. To prove the converse, supposeG is not bipar-
tite. Construct the following set of propositional statements,S = {pv ↔ ¬pu|v, u ∈
V (G), (u, v) ∈ E(G)}, over the set of variables{pv|v ∈ V (G)} whereV (G) rep-
resents the vertex set ofG andE(G) represents the edge set ofG. SinceG is not
bipartite,S is unsatisfiable. By propositional compactness, there exists a finite subset
of S that is unsatisfiable. Then there is a finite subgraph ofG which is not bipartite.
This finite subgraph has an odd cycle. Hence, ifG is not bipartite, thenG has an odd
cycle.

Now suppose the class of bipartite graphs is definable by a sentenceφ. Observe that
φ ∈ PS. Then by Theorem 1,φ is definable by a∀n sentence so that¬φ is definable
by a∃n sentence. Then the minimal models of¬φ are of size bounded byn. Then
consider a cycleG of length2n + 1. By Lemma 2,G models¬φ. But any proper
induced subgraph ofG is simply a collection of paths and is hence bipartite so thatG

is a minimal model of¬φ - a contradiction.

4 Inexpressibility using Theorem 2 and Lemma 1

4.1 Cycles (alternate proof)

Suppose the classC of all graphs containing cycles is expressible by a sentenceφ. Now
in any model ofφ, the induced subgraph formed by the vertices of any cycle serves as
a core. Thenφ ∈ PSCf . Then by Lemma 1,φ ∈ PSC and hence is inPSC(k) for
somek. Thenφ forces the girth of the graph to be atmostk. Then a cycle of length
k + 1 is not a model ofφ though it is inC.

4.2 Bipartiteness (alternate proof)

Suppose the classC of all bipartite graphs was expressible by a sentenceφ. Then by
Lemma 2,¬φ captures the classC of all graphs containing odd cycles. In any model
of ¬φ, the induced subgraph formed by the vertices of any odd cycleserves as a core.
Then¬φ ∈ PSCf . Then by Lemma 1,¬φ ∈ PSC and hence is inPSC(k) for some
k. Then¬φ forces the girth of the graph to be atmostk. Then a cycle of length2k + 1
is not a model of¬φ though it is inC. Then¬φ, and henceφ, cannot exist.

We now look at two interesting applications of Theorem 2 and Lemma 1 in proving
inexpressibility for which we are not aware of any way of using Theorem 1.

4.3 Caterpillars

A caterpillar is a tree in which a single finite path (thespine) is incident on or contains
every edge. While in graph theory, caterpillars are typically finite graphs we consider
this same definition in the infinite setting too - the spine is always finite in length but
the “legs” can be infinite.
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Suppose the class of all caterpillars is definable by a sentenceφ. Observe that in any
model ofφ, the spine of the caterpillar acts as a finite core - thenφ ∈ PSCf . Then by
Lemma 1,φ ∈ PSC and hence is inPSC(k) for somek. Then consider the “purely
spine” caterpillar - namely a path - of lengthk + 2. There is no core in this caterpillar
of size atmostk - a contradiction.
We can use the same reasoning to show that the class of “finite armies of caterpillars”
where each structure is a finite collection of caterpillars is also not FO definable. Each
such structure has a finite core - namely the collection of thespines of all the caterpillars
but there are no bounded cores.

4.4 Graph-connectedness

We show that over the class of undirected graphs, the class ofconnected graphs is
not FO definable. LetC be the class of all connected graphs. ConsiderC - the class
of all disconnected graphs. Consider a graphG in C. Choose two distinct connected
components and choose a node from each. Check that the induced subgraph formed by
these two nodes is a core inG. ThenC ∈ PSC (in factPSC(2)). SupposeC is defined
by a sentenceφ - thenφ ∈ PSC. Using Theorem 2 and Lemma 1,φ is equivalent
to a Σ0

2
sentenceψ. Let ψ = ∃mx̄ ∀nȳ β(x̄, ȳ). Consider a graphG1 which is a

single both-ways infinite pathP . SinceP is a path, by definition, any two vertices
in G1 are at a finite distance from each other so thatG1 is connected and hence in
C. LetG2 be a graph which contains exactly 2 both-ways infinite paths (call these as
P1 andP2). ClearlyG2 is disconnected and hence is inC. ThenG2 |= φ and hence
G2 |= ψ. Consider a witness̄a in G2 for the x̄ variables. Let̄a1 = (a1

1
, . . . , ak

1
) be

the part ofā that comes from pathP1 and ā2 = (a1
2
, . . . , al

2
) be the part of̄a that

comes from pathP2. Note thatk + l = m. Then inG1, choose elements̄e for the
x̄ variables s.t. the elements ofē are either inē1 and ē2 but not both. The tuples
ē1 and ē2 satisfy the following: (i)ē1 = (e1

1
, . . . , ek

1
) and ē2 = (e1

2
, . . . , el

2
) and (ii)

d(ei
1
, e

j
1
, G1) = d(ai

1
, a

j
1
, G2) for 1 ≤ i, j ≤ k andd(ei

2
, e

j
2
, G1) = d(ai

2
, a

j
2
, G2) for

1 ≤ i, j ≤ l and (iii) d(ei
1
, e

j
2
, G1) > 2n for 1 ≤ i ≤ k and1 ≤ j ≤ l. Hered(x, y,G)

stands for the distance betweenx andy in graphG.
Now choose anȳf = (f1, . . . , fn) asȳ in G1. We intend to show thatG1 |= β(ē, f̄).
Towards this we importantly observe the following: It is possible to choose elements
b̄ = (b1, . . . , bn) fromG2 such that the subgraph ofG1 induced by the elements ofē
and f̄ is isomorphicto the subgraph ofG2 induced by the elements ofā and b̄ under
the isomorphismH given byH(ei

1
) = ai

1
, H(ej

2
) = a

j
2
, H(fr) = br where1 ≤ i ≤

k, 1 ≤ j ≤ l and1 ≤ r ≤ n.
ThenG1 |= β(ē, f̄) iff G2 |= β(ā, b̄). But sinceā is a witness forψ in G2, G2 |=
β(ā, b̄) so thatG1 |= β(ē, f̄). Sincef̄ was arbitrary,G1 |= ∀nȳβ(ē, ȳ). In other
words,G2 |= ψ. But sinceψ is equivalent toφ, we haveG1 |= φ. But G1 is a
connected graph - a contradiction.
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