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Abstract
We investigate the applications of preservation theorems in showing irssipite
ity results in FO.
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1 Introduction

Preservation theorems have been an important area of studgdel theory. Preserva-
tion properties talk about collections of first order (FQustures which are preserved
under model-theoretic operations. Preservation theqramisnportant class of results
which study the relationship between syntax and semarattsmpt to syntactically
characterize preservation properties. One of the eapiestervation theorems is the
tos-Tarski preservation theorem which states that overrargistructures a FO sen-
tence is preserved under taking substructures iff it is\ed@int to all{ sentence - a
sentence which does not use any existential quantifiers liildlual form, over arbi-
trary structures a FO sentence is preserved under extariffidris equivalent to &
sentence - a sentence which does not use any universalfigrantin [2], we investi-
gated a generalization of the “preservation under sultsires’ property - a property
which we call as “preservation under substructures modultefcores” and obtained
a syntactic characterization in termsX#$ sentences for FO definable properties. We
refer the reader to [2] for details. In this short article weend to explore the appli-
cations of the above two preservation theorems and somedelasults in showing
inexpressibility results in FO. Inexpressibility resuilts=O have always been of great
interest since they show the limits of the expressive powEQ These results are typ-
ically shown using Compactness, Ehrenfeuctitis® games or locality arguments. It
is then interesting that preservation theorems can pravidiéferent approach to these
classical results.

We clarify at the outset that the properties we considerlared of arbitrary structures
(i.e. finite and infinite). We are yet to investigate how owgulés can be used to show
inexpressibility results in the finite. Also we will be codsring properties of structures
of purely relational vocabularies.



2 Thetools

We refer the reader to [2] for the notions and notations. WeotkebyP'S, all those
classes of structures that are preserved under takingreatuses and denote by.S
the FO-definable subsets of it. We denoteB§C;, PSC andPSC(k), all those
classes of structures that are preserved under takingrsatses modulo finite cores,
modulo bounded cores and modulo bounded cores of size atnrespectively and
denote their FO-definable subsetsB§C;, PSC and PSC (k) respectively. By:?
(resp.11?), we mean sentences in PNF whose quantifier prefix beginsattresp.
V) and consists of — 1 alternations of quantifiers. We calf sentences asxistential
andI1 sentences asmiversal

We now state explicitly the results that we will use.

Theorem 1 (Los-Tarski) A FO sentencgis in PS iff it is equivalent to d19 sentence.

Theorem 2 (Theorem 2, [2]) A sentencg € PSCy iff ¢ is equivalent to &9 sen-
tence.

Lemmal (Lemma 2, [2[)PSC = PSCYy.

3 Inexpressibility using Theorem 1

3.1 The class of all finite structures

Suppose this class, s&y was axiomatizable by a sentenge Observe thaty € PS

so that by Theorem 1 is equivalent to d19 sentence. Them¢ is equivalent to a
»9 sentence). Now 1, being aX{ sentence, has minimal models of finite (in fact
bounded) size. Thep and hence ¢ has a finite model. But this model must satigfy

- contradiction.

3.2 Cycles

Suppose the clagsof graphs containing cycles is expressible using a FO seatgn
Then the models ofi¢ form the class of trees - which is preserved under substestu
Then by Theorem 17¢ is equivalent to &* sentence so that is equivalent to a*
sentence. Then forces the girth of the graph to be atméstThen a cycle of length
k + 1 violatese but is present ir.

3.3 Bipartiteness

A finite graph is non-bipartite iff it contains an odd lengycke. This result can be
seen to be true even if the graph is infinite.

Lemma 2 A graphG is bipartite iff G has no odd cycles.



Proof: If G is finite, we are done. Consider the case thas infinite. If G is bipartite,
then clearlyG cannot have odd cycles. To prove the converse, supgas@ot bipar-
tite. Construct the following set of propositional statenseS = {p, < —pu|v,u €
V(G), (u,v) € E(G)}, over the set of variable§p, [v € V(G)} whereV(G) rep-
resents the vertex set 6f and F(G) represents the edge set@f Sinced is not
bipartite, S is unsatisfiable. By propositional compactness, therasaisinite subset
of S that is unsatisfiable. Then there is a finite subgrapty efhich is not bipartite.
This finite subgraph has an odd cycle. Hencé7 is not bipartite, theri? has an odd
cycle. |

Now suppose the class of bipartite graphs is definable by tesesy. Observe that
¢ € PS. Then by Theorem 1 is definable by &™ sentence so that¢ is definable
by a3 sentence. Then the minimal models-ap are of size bounded by. Then
consider a cycler of length2n + 1. By Lemma 2,G models—¢. But any proper
induced subgraph @ is simply a collection of paths and is hence bipartite so that
is a minimal model of~¢ - a contradiction.

4 Inexpressibility using Theorem 2 and Lemma 1

4.1 Cycles (alternate proof)

Suppose the clagsof all graphs containing cycles is expressible by a sentenbiw
in any model ofp, the induced subgraph formed by the vertices of any cychesas
acore. Thenp € PSCy. Then by Lemma 1¢ € PSC and hence is ilPSC (k) for
somek. Theng forces the girth of the graph to be atmdstThen a cycle of length
k + 1 is not a model ofp though it is inC.

4.2 Bipartiteness (alternate proof)

Suppose the clagsof all bipartite graphs was expressible by a sentefic&hen by
Lemma 2,-¢ captures the clags of all graphs containing odd cycles. In any model
of ¢, the induced subgraph formed by the vertices of any odd senees as a core.
Then—¢ € PSCy. Then by Lemma 15:¢ € PSC and hence is ilPSC(k) for some

k. Then—¢ forces the girth of the graph to be atméstThen a cycle of lengthk + 1

is not a model of~¢ though it is inC. Then—¢, and hence, cannot exist.

We now look at two interesting applications of Theorem 2 aedhima 1 in proving
inexpressibility for which we are not aware of any way of gsirheorem 1.

4.3 Caterpillars

A caterpillar is a tree in which a single finite path ($@né is incident on or contains
every edge. While in graph theory, caterpillars are typyctitite graphs we consider
this same definition in the infinite setting too - the spinelgags finite in length but
the “legs” can be infinite.



Suppose the class of all caterpillars is definable by a seatenObserve that in any
model ofg, the spine of the caterpillar acts as a finite core - then PSCy. Then by
Lemma 1, € PSC and hence is iiPSC(k) for somek. Then consider the “purely
spine” caterpillar - namely a path - of length+ 2. There is no core in this caterpillar
of size atmosk - a contradiction.

We can use the same reasoning to show that the class of “finiiesof caterpillars”
where each structure is a finite collection of caterpillaralso not FO definable. Each
such structure has a finite core - namely the collection ofplrees of all the caterpillars
but there are no bounded cores.

4.4 Graph-connectedness

We show that over the class of undirected graphs, the classrofected graphs is
not FO definable. Le€ be the class of all connected graphs. Consitlethe class
of all disconnected graphs. Consider a grapim C. Choose two distinct connected
components and choose a node from each. Check that the thduiograph formed by
these two nodes is a cored ThenC € PSC (in fact PSC(2)). Suppos€ is defined
by a sentence - then¢ € PSC. Using Theorem 2 and Lemma &,is equivalent
to axy sentence). Lety = 3™z V"y B(z,7). Consider a grapli:; which is a
single both-ways infinite patl?. SinceP is a path, by definition, any two vertices
in G; are at a finite distance from each other so tf#atis connected and hence in
C. Let GG, be a graph which contains exactly 2 both-ways infinite path# these as
P, and P). Clearly G, is disconnected and hence isdn ThenG» = ¢ and hence
G [= 9. Consider a witnessg in G, for the z variables. Leti; = (ai,...,a%) be
the part ofa that comes from pat®, anda, = (ai,...,dl) be the part ofa that
comes from pathP,. Note thatk + [ = m. Then inGy, choose elements for the

z variables s.t. the elements afare either iné; and e, but not both. The tuples
€1 ande, satisfy the following: (), = (el,...,e}) andes = (e},...,€h) and (ii)
d(et,e],G1) = d(al,a],Ga) for 1 <i,j < kandd(eb, e}, G1) = d(ab,a}, Go) for
1<4,j <land (iii)d(el, e}, G1) > 2nfor1 <i < kandl < j <. Hered(z,y, G)
stands for the distance betweemndy in graphG.

Now choose any = (fi, ..., f,) asy in G;. We intend to show that; = 3(e, f).
Towards this we importantly observe the following: It is pifide to choose elements
b= (by,...,b,) from Gy such that the subgraph 6f, induced by the elements ef
and f is isomorphicto the subgraph ofy, induced by the elements afandb under
the isomorphisn¥/ given by H(e}) = ai, H(e}) = ab, H(f,) = b, wherel < i <
kE,1<j<landl <r <n.

ThenG, | B(e, f) iff G2 |= B(a,b). But sincea is a witness for) in G, G2 =
B(a,b) so thatG, = B(e, f). Sincef was arbitrary,G; = V"33(e, 7). In other
words, Gy |= . But sincey is equivalent top, we haveG; = ¢. ButG; is a
connected graph - a contradiction.
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