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Abstract. While structural width parameters (of the input) belong to
the standard toolbox of graph algorithms, it is not the usual case in com-
putational geometry. As a case study we propose a natural extension of
the structural graph parameter of clique-width to geometric point con-
figurations represented by their order type. We study basic properties
of this clique-width notion, and relate it to the monadic second-order
logic of point configurations. As an application, we provide several linear
FPT time algorithms for geometric point problems which are NP-hard
in general, in the special case that the input point set is of bounded
clique-width and the clique-width expression is also given.

Keywords: Point configuration · Order type · Fixed-parameter
tractability · Relational structure · Clique-width

1 Introduction

An order type is a useful means to characterize the combinatorial properties of
a finite point configuration in the plane. As introduced in Goodman and Pol-
lack [17,18], the order type of a given set P of points assigns, to each ordered
triple (a, b, c) ∈ P 3 of points, the orientation (either clockwise or counter-
clockwise) of the triangle abc in the plane. More generally, if the point set P
is not in a general position, the triple (a, b, c) may also be collinear (as the
natural third option).

Knowing the order type of a point set P is sufficient to determine some useful
combinatorial properties of the geometric set P , such as the convex hull of P and
other. For example, problems of finding convex holes in P or dealing with the
intersection pattern of straight line segments with ends in P , can be solved by
looking only at the order type of P and not on its geometric properties. That is
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why order types of points sets are commonly studied from various perspectives
in the field of computational geometry, e.g., [2–6,16,19,27].

On the other hand, knowing the order type of P is obviously not sufficient to
answer questions involving truly “geometric” aspects of P , e.g., distances in P
(straight-line or geodesic), or angles between the lines or the area of polygons
within P . Nevertheless, even in such geometry-based problems, a more efficient
subroutine computing with the order type of P might speed-up the overall com-
putation, which can be a promising direction for future research.

Unlike in the area of graphs and graph algorithms, where structural width
parameters are very common for many years, at least since the 90’s, no similar
effort can be seen in combinatorial and computational geometry. We would like
to introduce, in this paper, possible combinatorial handling of “structural com-
plexity” of a given point configuration P through defining its “width” (which
we would assume to be small for the studied inputs).

Inspired by graph structure parameters, the obvious first attempt could be to
extend the traditional notion of tree-width [26]. Such an extension is technically
possible (cf. tree-width of the Gaifman graph of a relational structure), but the
huge problem is that for the tree-width to be upper-bounded, the underlying
structure must be “sparse” – in particular, it can only have a linear number of
edges/tuples. This is clearly not satisfied for the order type in which about half
of all triples are of each orientation.

A better option comes with another traditional, but not so well-known, notion
of clique-width [12]. Clique-width can be bounded even on dense graphs, such as
on cliques, and, similarly to the case of Courcelle’s theorem [9] for tree-width,
clique-width also enjoys some nice metaalgorithmic properties, e.g. [11,15]. This
includes solving any decision (and some optimization as well) problems formu-
lated in the monadic second-order (MSO) logic in linear time. Hence, alongside
the (Sect. 2) proposed definition of the clique-width of point configurations, we
will introduce the MSO language of their order types and discuss which problems
can be formulated in this language (and hence solved in linear time if a point
set with a decomposition of bounded clique-width is given on the input).

Arguments which were omitted due to space restrictions can be found in the
full paper preprint arXiv:2004.02282.

2 Order Types and Clique-Width

We now recall the notion of an order type in a formal setting, and propose
a definition of the clique-width of (the order type of) a point configuration,
based on a natural specialization of the very general concept of clique-width of
relational structures. A relational structure S = (U, RS

1 , . . . , RS
a ) of the signature

σ = {R1, . . . , Ra} consists of a universe (a finite set) U and a (finite) list of
relations RS

1 , . . . , RS
a over U . For instance, for graphs, U = V (G) is the vertex

set and RG
1 = E(G) is the binary symmetric relation of edges of G.

https://arxiv.org/abs/2004.02282
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For a set of points P , here always considered in the plane, consider a map
ω : P 3 → {+,−, 0} where ω(a, b, c) = 0 if the triple of points1 a, b, c is collinear,
ω(a, b, c) = + if abc forms a counter-clockwise oriented triangle, and ω(a, b, c) =
− otherwise. Then ω is traditionally called the order type of P , but we, for
technical reasons, prefer defining the order type of P as the ternary relation
Ω ⊆ P 3 such that (a, b, c) ∈ Ω iff ω(a, b, c) = +. Hence we have formally got a
relational structure (P,Ω) of the signature consisting of one ternary symbol. We
will also write Ω(P ) to emphasize that Ω is the order type of the point set P .

Observe that ω(a, b, c) = − iff (b, a, c) ∈ Ω, and ω(a, b, c) = 0 iff (a, b, c) �∈ Ω
and (b, a, c) �∈ Ω. Hence, the relation Ω fully determines the usual order type
of P . Furthermore, (a, b, c) ∈ Ω implies (b, c, a) ∈ Ω and (c, a, b) ∈ Ω, and so we
call the set of triples {(a, b, c), (b, c, a), (c, a, b)} the cyclic closure of (a, b, c) ∈ Ω.

Unary Clique-Width. We start with the definition of ordinary graph clique-
width. Let an �-expression be an algebraic expression using the following four
operations on vertex-labelled graphs using � labels:

(u1) create a new vertex with single label i;
(u2) take the disjoint union of two labelled graphs;
(u3) add all edges between the vertices of label i and label j (i �= j); and
(u4) relabel all vertices with label i to label j.

The clique-width cw(G) of a graph G equals the minimum � such that (some
labelling of) G is the value of an �-expression.

The idea behind this definition is that the edge set of a graph G can be
constructed with “bounded amount of information”; this is since we have only
a fixed number of distinct labels and vertices of the same label are, intuitively
speaking, further indistinguishable by the expression.

This definition has an immediate generalization to the unary clique-width of
an order type Ω(P ) of a point set P (the adjective referring to the fact that
labels occur as unary predicates in the definition): replace (u3) with

(u3’) add to Ω the cyclic closures of all triples (a, b, c) of distinct elements such
that a is labelled i, b is labelled j and c is labelled k.

Unfortunately, although being very simple, this definition is generally not sat-
isfactory due to problems discussed, e.g., in [1] and specifically illustrated for
order types in our Proposition 2.

Multi-ary Clique-Width. While in the case of graphs (whose edge relation is
binary) it is sufficient to consider clique-width expressions with unary labels,
for the ternary order-type relation (as well as for other relational structures of
higher arity) it is generally necessary to allow creation of “intermediate” binary
labels, which are labelled pairs of points of P .

This generalization, which is in agreement with the treatment by Blumensath
and Courcelle [7], leads to the proposed new definition:
1 Note that if any two of a, b, c are not distinct, then we automatically get ω(a, b, c) = 0.
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Definition 1 (Clique-width of a point configuration). Consider an alge-
braic expression E using the following five operations on labelled relational struc-
tures (of arity 3 in this case) over point sets:

(w1) create a new point with single label i;
(w2) take the disjoint union of two point sets;
(w3) for every two points, point a of label i and point b of label j (i �= j), give

the ordered pair (a, b) binary label k;2

(w4) for every three pairwise distinct points, a, b and c such that c is of (unary)
label i, and the pair (a, b) is of (binary) label k, add to the structure the
cyclic closure of the ordered triple (a, b, c);

(w4’) under the same conditions as in (w4), add the cyclic closure of (b, a, c);
(w5) relabel all tuples (singletons or pairs) with label i to label j of equal arity.

The value of such expression E is the ternary relational structure on the points
created by (w1) and consisting of the triples added by (w4) and (w4’). The
auxiliary labels introduced in E are no longer relevant after the evaluation of E .

The width of an expression E constructed as in (w1)–(w5) equals the sum of
arities of the labels occuring in E .3 The clique-width cw(P ) of a point configu-
ration P equals the minimum � such that the order type Ω(P ) of P is the value
of an expression of width at most �.

Note that, although the clique-width is a concrete natural number, we will
not be interested in the exact value of it, but instead study whether the clique-
width is bounded or unbounded on a given class of point configurations.

For a closer explanation of this concept, we present a basic example:

Proposition 2. Let P be an arbitrary finite set of points in a strictly convex
position.4 Then the clique-width of P is bounded by a constant, while the unary
clique-width of P is unbounded.

Proof Outline. Let the points of P be p1, p2, . . . , pn in the counter-clockwise order
(starting arbitrarily). We start with p1 and stepwise add p2, p3 etc., changing
previous points to label 1 and the added point created with unique label 2. See
Fig. 1. Along the steps, after the creation of pj , we add the binary label 3 to all
pairs labelled 1 and 2, i.e., to (pi, pj) for all i < j, and create the order triples
(pi, pi′ , pj) of three distinct points over all pairs (pi, pi′) of label 3 and pj of
label 2. This construction witnesses that the clique-width of P is at most 4.

On the other hand, take unary clique-width with � labels, and |P | ≥ 2� + 1.
An arbitrary �-expression for Ω(P ) must involve a union operation (the “last”
one) over two sets such that one has more than � points. Then, at the time of
taking the union, there are two points a, b of the same label in the set by the
pigeon-hole principle. Let c be any point from the other set. Then there is no
2 After this operation, (a, b) may hold more than one binary label, which is ok.
3 Note that this ‘sum of arities’ measure directly generalizes the number � of unary
labels in the expression of (u1)–(u4).

4 That is, in the convex hull of P every point of P is a vertex.
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way, based on the labels, to distinguish between the triples (a, b, c) and (b, a, c),
which must have the opposite orientations in Ω(P ). Therefore, the clique-with
of P must be at least � + 1.

pj

p1
p2 pi

pi

pn

Fig. 1. An illustration of the expression (width 4) in Proposition 2. Unary labels 1 are
blue (on p1, . . . , pj−1), the unique label 2 is orange (on pj just added), and the binary
labels 3 are with green arrows. We are just creating the red triple(s) (pi, pi′ , pj). (Color
figure online)

Annotated Point Configurations. In some situations, it may be useful to consider
a point configuration P with additional information (or structure) on the points
or selected pairs of them. An exemplary use case for such annotations is to study
polygons, with P as the vertex set, for which case we are considering an order
type Ω(P ) together with a directed Hamiltonian cycle on P representing the
counter-clockwise boundary of P .

Formally, we simply consider relational structures (over P ) with the signature
consisting of the ternary order type and arbitrary binary or unary symbols.
The clique-width of such an annotated point configuration P is, naturally, as in
Definition 1 with additional rules that some of the auxiliary unary and binary
labels are at the end turned into the desired unary and binary relations on P .

3 MSO Logic of Order Types

The beginning of this section is devoted to a short introduction of the monadic
second-order (MSO) logic of relational structures. Recall a relational structure
S = (U, RS

1 , . . . , RS
q ) of the signature σ = {R1, . . . , Rq}.

The language of MSO logic (of the signature σ) then consists of the standard
propositional logic, quantifiers ∀,∃ ranging over elements and subsets of the
universe U , and the relational symbols R1, . . . , Rq with the following meaning:
for Ri of arity a, we have S |= Ri(x1, . . . , xa) if and only if (x1, . . . , xa) ∈ RS

i .
In our specific case of order types Ω(P ) of point sets P , we use the relational

symbol ordccw(x1, x2, x3) for Ω within MSO logic. For example, we can express
that a point y lies strictly in the convex hull of points x1, x2, x3 as follows
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[
ordccw(x1, x2, x3) ∧

∧
i=1,2,3

ordccw(xi, xi+1, y)
]

∨ (1)
[
ordccw(x3, x2, x1) ∧

∧
i=1,2,3

ordccw(xi+1, xi, y)
]
,

where x4 is taken as x1.
More generally, we can express that a point y ∈ P belongs to the convex hull

(not necessarily strictly now) of a set X ⊂ P with the following formula:

convhull(X, y) ≡ y ∈ X ∨ ∀x, x′ ∈ X (2)[(
x �= x′ ∧ ∀z ∈ X¬ ordccw(x′, x, z)

) → ¬ ordccw(x′, x, y)
]

Then we may express, for example, that a set X ⊆ P is a convex hole (i.e., no
point outside of X belongs to the convex hull of X, and no point of X belongs
to the convex hull of the rest of X) with the following:

∀y �∈X (¬ convhull(X, y)) ∧ ∀Y ⊆X∀z∈X(convhull(Y, z) → z ∈ Y ) (3)

Further similar examples are easy to come up with.

Interpretations and Transductions. We sketch the concept of “translating”
between relational structures. Consider relational signatures σ = {R1, . . . , Rq}
and τ = {R′

1, . . . , R
′
t}. A (simple) MSO interpretation of τ -structures in σ-

structures is a t-tuple of MSO formulas Ψ = (ψi : 1 ≤ i ≤ t) of the signature σ,
where the number of free variables of ψi equals the arity ai of R′

i. A τ -structure
T is interpreted in a σ-structure S via Ψ if T and S share the same ground set U
and, for each 1 ≤ i ≤ t, we have (x1, . . . , xai

) ∈ R′
i
T ⇐⇒ S |= ψi(x1, . . . , xai

).
As a short example, consider a point set P and its mirror image P ′. Then

the order type Ω(P ′) can be interpreted in Ω(P ) simply by taking ψ1(a, b, c) ≡
ordccw(b, a, c). The true power of interpretations will show up in the following.

There is a more general concept of a transduction from a σ-structure S to a
set of τ -structures which, before taking an (MSO) interpretation, has abilities
(in this order of application); (i) to equip S with a fixed number of arbitrary
parameters given as unary labels (because of this, the result of a transduction is
not deterministic, but a set of τ -structures), (ii) to “amplify” the ground set of
S by taking a bounded number of disjoint copies of S, and (iii) to subsequently
restrict the ground set by an MSO formula with one free variable. See Courcelle
and Engelfriet [10] for more technical details on transductions.

Considering a transduction Ψ (as described above) and a σ-structure S, let
Ψ(S) denote the set of τ -structures which result from S under the transduction Ψ .
For a class of relational structures S, the image under a transduction Ψ of the
class S is the union of all transduction results, precisely, Ψ(S) :=

⋃
S∈S Ψ(S).

Note that one can come up with various notions of clique-width of relational
structures (also giving distinct numbers for the same structure), but the under-
lying essence is always “the same”. In order to smoothen out marginal technical
differences between the various definitions, we consider the following. We say
that a class S is of bounded clique-width if there exists a constant h such that the
clique-width of every S ∈ S is at most h. On such abstract level, we then have
the following crucial characterization (essentially a metadefinition):
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Theorem 3 (Blumensath and Courcelle [7, Proposition 27]). A class S of
finite relational structures (of the same signature) is of bounded clique-width, if
and only if S is contained in the image of the class of finite trees under an MSO
transduction.

For a very informal explanation of the meaning of this statement, we remark
that a tree which is the preimage of the mentioned transduction gives a hier-
archical structure to the clique-width expression in Definition 1. The arbitrary
transduction parameters then determine particular operations (and labelling)
used within the expression, and the formula(s) of a final interpretation roughly
encodes Definition 1 itself. No copying (“amplification”) is necessary there.

Since the concept of a transduction is transitive, Theorem3 implies:

Corollary 4. If a class S of order types (of points) is of bounded clique-width,
then the image of S under an MSO transduction is also of bounded clique-width.

Deciding MSO Properties. Perhaps the most important application of bounded
clique-width of point configurations P could be in faster deciding of MSO-
definable properties (and, in greater generality, of some optimization and count-
ing properties as well, see examples in [11]) of the order type of P .

Theorem 5 (Courcelle et al. [11], via Theorem 3). Consider a class S

of finite relational structures of signature σ and of bounded clique-width. For
any MSO sentence ϕ of signature σ, if a structure S ∈ S is given on the input
alongside with a clique-width expression of bounded width, then we can decide in
linear time whether S |= ϕ (i.e., whether S has the property ϕ).

Furthermore, under the same assumptions for S and for an MSO formula
ϕ(X) with a free set variable X, we can find in linear time a minimum- or
maximum-cardinality set X such that S |= ϕ(X), and we can enumerate all
sets X such that S |= ϕ(X) in time which is linear in the input plus output size.

4 Assorted Examples

First, to give readers a better feeling about how big the clique-width of “nicely
looking” point sets in the plane can be, we show the following:

Theorem 6. Let P be a point configuration, P0 ⊆ P and d = |P \ P0|.
(a) If all points of P0 are collinear, then the clique-width of P is in O(d).
(b) Assume the points of P0 are in a strictly convex position. If d ≤ 1, then the

clique-width of P is bounded (by a constant). On the other hand, there exist
examples already with d = 2 and unbounded clique-width of P .



Clique-Width of Point Configurations 61

Proof Outline. In case (a), we first create the d points of P \ P0, each with its
unique label, and their counter-clockwise order triples. See Fig. 2(a). Then we
stepwise create the collinear points of P0, ordered from left to right. During the
steps, we add binary labels on P0 between each pair from left to right, and we
also in the right order create the needed order triples having one point in P0 and
two points in P \ P0. At the end, we easily create from the binary labels on P0

the remaining order triples having two points in P0 and one in P \ P0.
In case (b), if d = 1, we construct an expression similarly as in Proposition 2,

but we simultaneously proceed in two subsequences of the counter-clockwise
perimeter of P0, “opposite” to each other. This process of construction allows
us to create also the counter-clockwise order triples involving the sole point of
P \ P0 (in “the middle”).

a)

P0

b)

P0

m n

p0

q0

pk
p3k+1

Fig. 2. Illustrations of the two parts of Theorem6. (a) Labelling for an expression of
bounded width. (b) A sketch of interpreting a large grid within the point configuration.
(Color figure online)

In case (b) with d ≥ 2, we present a construction informally shown in
Fig. 2(b). The underlying idea is to use the points of P \P0 to “mutually relate”
opposite points of P0, such as the depicted collinear triples p0,m, q0 and q0, n, pk.
Collinear triples are easy to detect within the order type, hence we can this way
interpret the binary relation between p0 and pk, analogously between subsequent
p1 and pk+1, and so on (see the green dashed arrows in the picture). Together
with a description of neighbouring points of P0 – see x and x′ in (2), we can inter-
pret an arbitrarily large square grid graph on the points p0, p1, . . . , pk, pk+1, . . .
Since the square grid is a folklore basic example of unbounded clique-width [10],
Corollary 4 implies that the clique-width of such configurations P (with d = 2)
is unbounded. A similar construction, albeit more complicated, with “doubling”
the points qi, can show the same result without having collinear triples in P .

Some NP-Hard Problems of Point Configurations

As already mentioned, perhaps the most interesting computing application of
clique-width of point sets could be in designing algorithms which run in param-
eterized polynomial, or even linear, time with respect to the clique-width as the
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parameter. This is especially relevant for problems for which no such algorithms
are believed to exist in general, such as for NP-hard problems.

A parameterized problem has an FPT algorithm if the algorithm runs in
time O(f(d) · nc) where f is an arbitrary computable function of the (fixed)
parameter d, and c is a constant. If c = 1, then we speak about a linear FPT
algorithm (e.g., this is the complete case of Theorem 5).

Since, except the binary case such as that of graphs, there is no known FPT
algorithm (even approximation one) for finding a clique-width expression of rela-
tional structures of bounded clique-width, we must assume that an expression of
bounded width is given alongside with the input point configuration. Notice that
for the above presented examples of small clique-width, the relevant expressions
are very natural and easy to come with.

General Position Subset. This problem asks whether, for a given point set P
and integer k, there exists a subset Q ⊆ P such that no three points of Q are
collinear and |Q| ≥ k. This problem is NP-hard and APX-hard by [14].

Theorem 7. Assume a point set P is given alongside with a clique-width expres-
sion (for Ω(P )) of width d. Then the General position subset problem of P
is solvable in linear FPT time with respect to the parameter d.

Proof. We write the MSO formula

ϕ(X) ≡ ∀x, y, z ∈ X
[
x �= y �= z �= x → (

ordccw(x, y, z) ∨ ordccw(y, x, z)
)]

to say that no three points in X are collinear, and then compute using Theorem5
the value maxΩ(P ) |=ϕ(X) |X| and compare to k. ��

A very similar simple approach works also for the NP-hard problem Hitting
set for induced lines [25], which asks for a minimum-cardinality subset H ⊆
P such that the lines between each pair of points of P all contain a point of H.

Minimum Convex Partition. Consider a given point set P and an integer k. The
objective of this problem [13] is to decide whether the convex hull conv(P ) of P
can be partitioned into ≤ k convex faces. By a convex face in this situation we
mean the convex hull of a subset Q ⊆ P which is a convex hole of P (recall
(3)). Note that in our definition Q must be strictly convex, but we may as well
apply a non-strict variant in which some points of Q (possibly) are not vertices
of conv(Q) but lie on the boundary of conv(Q); the arguments would be similar.

This problem has been recently claimed NP-hard [20]. Unfortunately, inher-
ent limitations of MSO logic do not allow us to directly formulate the Min-
imum convex partition as an MSO optimization problem (one is not
allowed to quantify set families), but we can handle it if we take k as an addi-
tional parameter.

Theorem 8. Assume a point set P given alongside with a clique-width expres-
sion of width d. The Minimum convex partition problem of P into ≤ k convex
faces is solvable in linear FPT time with respect to the parameter d + k.



Clique-Width of Point Configurations 63

Proof Outline. Let convhole(X) denote the MSO formula (3). We may now write

∃X1, . . . , Xk

[∧
1≤i≤k

convhole(Xi) ∧ convpartition(X1, . . . , Xk)
]

where the subformula convpartition checks whether the convex hulls of the sets
Xi partition conv(P ). At this point, we know that each Xi is a convex hole in P ,
and we further test for set inclusion and the following two conditions:

– the boundaries of conv(Xi) and conv(Xj) (1 ≤ i < j ≤ k) do not cross, and
– every boundary edge of conv(Xi) is, at the same time, a boundary edge of

exactly one of conv(Xj) (i �= j) or of conv(P ).

Both conditions can be, although not easily, stated in MSO over order types.

Terrain Guarding. Another NP-hard problem formulated on point sets [22] is
that of guarding an x-monotone polygonal line L with the given vertex set P . The
objective of guarding is to find a minimum-cardinality vertex guard set G ⊆ P
such that every point � on L is seen by some point g ∈ G “from above the
terrain”, that is, the straight line segment from g to � is never strictly below L.

Note that the point set P (no two points of the same x-coordinate) uniquely
determines the terrain L, with the vertices ordered by their x-coordinates as
P = (p1, p2, . . . , pn). However, the order type Ω(P ) does not (unless we would
add an auxiliary point “at infinity” in the y-axis direction). That is why we
assume the terrain L given as a relational structure consisting of ternary Ω(P )
and the binary successor relation consisting of the pairs (p1, pi+1) for 1 ≤ i < n.

Fig. 3. Guarding a terrain: the two black square vertices guard the whole terrain, but
the bottom horizontal segment is not seen by any single one of them. To turn this (pair
of guards) into a valid segmented terrain guarding instance with a solution, we may
subdivide the bottom segment into two segments with a new vertex (the hollow dot)
of the terrain – each guard would then see an entire one of the two segments.

There is one further complication in regard of the order type Ω(P ) of the
terrain in this problem: if, in an instance, some edge of L is seen together by two
guards, but no one sees the full edge, then knowing only Ω(P ) is not sufficient
to verify validity of such a solution (see Fig. 3). That is why we define here
the Segmented terrain guarding variant as follows: for every segment s of
L there must exist a vertex guard g seeing entire s and, moreover, there is a
dedicated subset P1 ⊆ P such that the guards g are selected from P1. By a
natural subdivision of terrains in the hard instances of terrain guarding [22] we
immediately get that also Segmented terrain guarding is NP-hard.

Theorem 9. Assume a polygonal terrain L given alongside with a clique-width
expression of width d (defining both the successor relation and the order type of
the vertices, cf. end of Sect. 2). The Segmented terrain guarding problem
of L is solvable in linear FPT time with respect to the parameter d.
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Proof Outline. We show a formula seguard(X) stating that every segment of the
terrain L is seen by one point of X. Then, we verify that, for every successive
pair of vertices (pi, pi+1) of L, there exists x ∈ X such that;

– the triple (x, pi, pi+1) is oriented counter-clockwise (for x to see the segment
pipi+1 “from above”), and

– no “peak” z on L between pi, pi+1 and x is oriented clockwise from (x, pi+1)
(if z is to the left of x) or counter-clockwise from (x, pi) (z to the right of x).

This suffices since L is x-monotone. Then Theorem5 finishes the argument.

We can similarly handle the orthogonal terrain guarding problem which is
also NP-hard [8]. Another possible extension is to minimize the sum of weighted
guards, using a weighted variant of Theorem5 (as in [11]). However, our app-
roach to terrain guarding cannot be directly extended to the traditional and
more general Art gallery (guarding) problem [23], not even in the adjusted case
when each edge of the polygon is seen by a single vertex guard. This is due to
possible presence of “blind spots” in the interior of the polygon which cannot
be determined knowing just the order type Ω(P ) and the boundary edges of the
polygon on P . Interested readers may find more in the full paper.

Polygon Visibility Graph. As we have mentioned the Art gallery problem, we
briefly add that people are also studying problems related to the visibility graph
of a given polygon Q. The visibility graph of Q has the same vertex set as Q
and the edges are those line segments with ends in the vertices of Q which are
disjoint from the complement of the polygon. We give the following toolbox:

Theorem 10. Assume a polygon Q with vertex set P given as a relational struc-
ture consisting of the order type Ω(P ) and the counter-clockwise Hamiltonian
cycle of edges of Q. Then the visibility graph of Q has an MSO interpreta-
tion in Q.

5 Conclusions

We managed to show, in this limited space, only few example applications of
bounding the clique-width in efficient parameterized algorithms for geometric
point problems. More examples of similar kind could be added but, as a future
work, we would especially like to investigate possible applications to “metric”
problems. Of course, MSO logic of order types cannot express metric properties
of a point set, but it could be possible that in some problems the enumerative
part of Theorem 5 provided us with a relatively short list of small subconfigu-
rations which would then be processed even by brute force, resulting in a faster
algorithm. For instance, we suggest to investigate in this manner the problem of
a minimum area triangle on a given point set, which is in general 3SUM-hard
(that is, not believed to have a subquadratic algorithm).

Another possible extension would be to consider order types in dimension 3
(or higher), but then even a strictly convex point set could easily have unbounded
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clique-width – the quaternary relational structures of such order types just seem
to be too complex even in very simple cases.

Lastly, we mention another very natural question; can the clique-width of
a point configuration be at least approximated by an FPT algorithm with the
width as the fixed parameter? Such an approximation is possible in the case of
graph clique-width [21,24], thanks to the close relation of graph clique-width to
rank-width and to binary matroids. Perhaps the natural correspondence of order
types to oriented matroids could be of some help in this research direction.

Acknowledgments. We would like to thank to Achim Blumensath and Bruno Cour-
celle for discussions about the clique-width of relational structures.
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