
INDIAN INSTITUTE OF TECHNOLOGY – BOMBAY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

S Y N O P S I S

of the Ph.D. thesis entitled
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Introduction

Classical model theory is a branch of mathematical logic which studies the relationship between

a formal language and its interpretations, also called models. The most well-studied formal lan-

guage in classical model theory is first order logic (henceforth called FO), that is a language

built up from predicates, functions and constant symbols using boolean connectives, and ex-

istential and universal quantification. Amongst the earliest areas of study in classical model

theory, is a class of results called FO preservation theorems. An FO preservation theorem for

a model-theoretic operation syntactically characterizes classes of structures that are defined us-

ing FO theories, and that are preserved under that operation. One of the earliest preservation

theorems is the Łoś-Tarski theorem (1954-55) [20], which states that a class of structures that is

defined by an FO theory is preserved under substructures if, and only if, it is definable by a the-

ory of universal sentences, the latter being FO sentences in which only universal quantifications

appear (see Theorem 3.2.2 in [7]). In “dual” form, this theorem states that a class of structures

that is defined by an FO theory is preserved under extensions if, and only if, it is definable by a

theory of existential sentences which are FO sentences that use only existential quantifications.

Historically speaking, the study of preservation theorems began with Marczewski asking in

1951, which FO definable classes of structures are preserved under surjective homomorphisms.

This question triggered off an extensive study of preservation theorems in which a variety of

model-theoretic operations like substructures, extensions, homomorphisms, unions of chains,

direct products, reduced products, etc. were taken up and FO preservation theorems for these

operations were proven.

While a preservation theorem can be seen as providing a syntactic characterization of a preser-

vation property, the same theorem, flipped around, can also be seen as providing a semantic

characterization (and furthermore, via a preservation property) of a syntactic class of FO theo-

ries. Thus, the Łoś-Tarski theorem provides semantic characterizations of existential and uni-

versal theories, in terms of preservation under extensions and preservation under substructures

respectively. Existential and universal theories are equivalent respectively to, what are known

in the literature as Σ0

1
and Π0

1
theories. For n ≥ 1, a Σ0

n theory is a set of Σ
0

n sentences, where

a Σ0

n sentence is an FO sentence in which from left to right, there are n blocks of quantifiers

(equivalently, n−1 alternations of quantifiers) beginning with a block of existential quantifiers,

followed by a quantifier-free formula. Likewise a Π0

n theory is a set of Π
0

n sentences, where a



Π0

n sentence is an FO sentence in which from left to right, there are n blocks of quantifiers be-

ginning with a block of universal quantifiers, followed by a quantifier-free formula. As already

mentioned, the Łoś-Tarski theorem provides semantic characterizations of Σ0

1
and Π0

1
theories.

For Σ0

n sentences and Π0

n theories for n ≥ 2, semantic characterizations were proven using

preservation properties defined in terms of ascending chains and descending chains (see Theo-

rem 5.2.8 in [7]). Finally in 1960, Keisler proved the n-sandwich theorem [24] that provides a

characterization of Σ0

n and Π
0

n theories, for each n ≥ 1, using preservation properties defined

uniformly in terms of the notion of n-sandwiches.

While the aforementioned properties characterize Σ0

n and Π0

n theories, and hence Σ
0

n and Π0

n

sentences, “as a whole”, none of these characterize Σ0

n and Π
0

n sentences/theories in which for

some given block, the number of quantifiers in that block is fixed to a given natural number

k. Further, all of these properties are in terms of notions that are “infinitary”, i.e. notions that

are non-trivial only when arbitrary (i.e. finite and infinite) structures are considered, and that

become trivial when restricted to only finite structures. Given the active interest in preservation

theorems in the finite model theory context (which we soon describe), none of the properties

mentioned above can be used to characterize Σ0

n and Π
0

n sentences in the finite, for n ≥ 2.

These observations raise the following two natural questions:

(Q1) Are there properties that semantically characterize (over arbitrary structures) Σ0

n and Π
0

n

sentences/theories in which the number of quantifiers appearing in a given block(s) is

fixed to a given natural number(s)?

(Q2) Are there characterizations of Σ0

n and Π
0

n sentences/theories in terms of notions that are

finitary and combinatorial? Whereby these notions can possibly serve to characterize Σ0

n

and Π0

n sentences over finite structures as well.

In the classical model theory part of this thesis, we consider the case when n = 2, and present

our partial results towards addressing the above questions. Specifically, for the case of Σ0

2
and

Π0

2
sentences, in which the number of quantifiers in the leading block is fixed to a given natu-

ral number, we identify preservation properties that positively answer both (Q1) and (Q2). In

other words, we present quantitative dual parameterized preservation properties that are finitary

and combinatorial, and that characterize (over arbitrary structures) Σ0

2
and Π0

2
sentences whose

quantifier prefixes are of the form ∃k∀∗ or ∀k∃∗. Our properties for the case of k = 0 are exactly

the classical properties of preservation under substructures and preservation under extensions,

whereby our characterizations of ∃k∀∗ and ∀k∃∗ sentences yield the Łoś-Tarski theorem for sen-



tences for the case of k = 0. We hence call our characterizations collectively as the generalized

Łoś-Tarski theorem for sentences at level k, and denote it as GLT(k). We describe this result,

its extension to theories, and other related results in more detail in Section .

The Σ0

2
and Π0

2
classes have always been of interest and importance in the literature. After

Hilbert posed the Entscheidungsproblem in the 1900s, namely the problem of deciding if a

given FO sentence is satisfiable, one of the first classes of FO sentences for which satisfiability

was shown to be decidable, was the Σ0

2
class. This was shown by Bernays and Schönfinkel in

1928 for Σ0

2
sentences without equality, and subsequently extended to full Σ0

2
by Ramsey [30]

(on a historical note: it was in showing this result that Ramsey proved the famous Ramsey’s

theorem). In a subsequent extensive research of about 70 years on the satisfiability problem for

prefix classes, it was shown [5] that Σ0

2
is indeed one of the maximal prefix classes for which

the satisfiability problem is decidable. With the growth of parameterized complexity theory [9],

it became interesting to study the computational complexity of the satisfiability problem for

the Σ0

2
class, in terms of counts of quantifiers as parameters. As shown in [5], satisfiability

for the Σ0

2
class is in NTIME((n · km)c), where n is the length of the input sentence, k and

m are the number of existential and universal quantifiers respectively in the sentence, and c

is a suitable constant. (On the other hand, for Π0

2
class, it turns out that if the number of

universal quantifiers is at least two, then satisfiability checking for this class is undecidable.) In

recent years, there has been significant interest in the Σ0

2
class from the program verification and

program synthesis communities as well [12, 18, 29, 32]. Here, the Σ0

2
class is also referred to as

effectively propositional logic. For the Π0

2
class on the other hand, the database community has

shown a lot of active interest in this class in the context of data exchange, data integration and

data interoperability [6, 14, 25, 27], and much more recently, in the context of query answering

over RDF and OWL knowledge [22, 23].

Returning to preservation theorems, with the advent of finite model theory with the work of

Fagin who proved the first descriptive complexity theory result characterizing the complexity

class NP in terms of existential second order logic [13], it became interesting to study preser-

vation theorems in the context of finite structures. It turns out that many important results and

techniques of classical model theory fail in the context of finite structures. The most stark fail-

ure is that of the compactness theorem, which is the most central tool in classical model theory.

Consequently, all proofs based on the compactness theorem – indeed this includes the proofs

of almost every preservation theorem – fail when restricted to only finite structures. But worse



still, the statements of most preservation theorems fail too. The Łoś-Tarski theorem fails in the

finite; Tait [33] showed there is an FO sentence that is preserved under extensions over the class

of all finite structures, but that is not equivalent over this class, to any existential sentence (this

result was rediscovered later by Gurevich and Shelah in 1984). The other preservation theo-

rems from the classical model theory literature mentioned earlier, namely those characterizing

Σ0

n and Π
0

n sentences/theories for n ≥ 2, fail in the finite too; this is simply because the charac-

terizing notions become trivial over finite structures. The homomorphism preservation theorem

is a rare theorem however that survives passage into the finite, and this is a landmark result due

to Rossman [31]. But then this is an exception.

To “recover” classical preservation theorems in the finite model theory setting, recent research [3,

4, 8, 10, 19] has focussed attention on studying these theorems over “well-behaved” classes of

finite structures. In particular, Atserias, Dawar and Grohe showed in [4] that under suitable

closure assumptions, classes of structures that are acyclic or of bounded degree admit the Łoś-

Tarski theorem for sentences. Likewise, the class of all structures of tree-width at most k also

admits the Łoś-Tarski theorem, for each natural number k. Some of the aforesaid classes, like

those of bounded tree-width, have proved especially useful in modern graph structure theory

and also from an algorithmic point of view. For instance, many computational problems that are

otherwise intractable, become tractable when restricted to structures of bounded treewidth [9].

Atserias, Dawar and Kolatis showed that for the aforesaid classes of structures, the homomor-

phism preservation theorem also holds [3] (Note that this theorem being true over all structures

does not imply that it would be true over subclasses of finite structures; restricting attention to

a subclass weakens both the hypothesis and the consequent of the statement of the theorem).

Subsequently, Harwath, Heimberg and Schweikardt [19] studied the bounds for an effective

version of the Łoś-Tarski theorem and the homomorphism preservation theorem over bounded

degree structures. In [10], Duris showed that the Łoś-Tarski theorem holds for structures that

are acyclic in a more general sense.

The above results give characterizations of the Σ0

1
and Π0

1
classes of sentences over the special

classes of structures mentioned. What happens to our characterizations of the Σ0

2
andΠ0

2
classes

of sentences, given by GLT(k), over the aforesaid special classes? It unfortunately turns out that

none of the above classes, in general, admits GLT(k) for any k ≥ 2. We show that the existence

of induced paths of unbounded length in a class is, under reasonable assumptions on the class,

the reason for the failure of our characterizations over the class. Since these assumptions are



satisfied by the aforesaid special classes and the latter allow unbounded induced path lengths

in general, GLT(k) fails over these classes in general. This therefore motivates us to ask the

following:

(Q3) Can we identify structural properties (possibly abstract) of classes of finite structures,

that are satisfied by interesting classes of finite structures, and that admit GLT(k)? And

furthermore, admit GLT(k) in effective form?

We answer this question affirmatively. In the finite model theory part of this thesis, we define

a parameterized logic-based combinatorial property of classes of finite structures that entails

GLT(k), and even in effective form, under suitable additional assumptions on our property. We

call our property as the L-equivalent bounded substructure property, denoted L-EBSP(S, k),

where S is a class of finite structures, k is a natural number, and L is either FO or an extension

of FO called monadic second order logic (MSO). We show that a variety of classes of structures

that are of interest to computer science and finite model theory satisfy L-EBSP(S, k); examples

of these include words, trees (unorderd, ordered or ranked), nested words, graphs classes of

bounded tree-depth, graph classes of bounded shrub-depth and n-partite cographs. All of these

classes of structures have enjoyed (and continue to enjoy) extensive interest from the computer

science community. Further these classes, except for words and trees, are very recent (defined

within the last 10-12 years). We give general methods to construct new classes of structures

that satisfy L-EBSP(·, k) from classes known to satisfy the latter property. Since GLT(k) for

the case of k = 0 is exactly the Łoś-Tarski theorem, we get a whole array of new classes that

were earlier not known to satisfy the Łoś-Tarski theorem. Interestingly, it turns out that all of

these new classes satisfy the homomorphism preservation theorem as well. The above, and

related results, are explained in more detail in Section .

We find it worth mentioning of L-EBSP(S, k) that it can be seen to be a finitary analogue of

the property that the classical downward Löwenheim-Skolem theorem (one the first results of

classical model theory) states of FO and arbitrary structures. We explicate this connection in

Section . The importance of the downward Löwenheim-Skolem theorem in classical model the-

ory can be gauged from the fact that this theorem, along with the compactness theorem, char-

acterizes FO. It indeed is pleasantly surprising that while the downward Löwenheim-Skolem

theorem is by itself meaningless over finite structures, a natural finitary analogue of the model

theoretic property that this theorem talks about, is satisfied by a wide spectrum of classes of fi-

nite structures, that are of interest and importance in computer science and finite model theory.



In the remainder of this synopsis, we formally state our main results, techniques and some

interesting open questions, first in the classical model theory setting, and subsequently all of

those in the finite model theory setting.

Results in the classical model theory context

We define new dual preservation properties, that for a natural number k as a parameter, provide

natural parameterized generalizations of the classical properties of preservation under substruc-

tures and preservation under extensions. Specifically, we define the property of preservation

under substructures modulo k-cruxes as a generalization of the property of preservation under

substructures, as follows.

Definition 1. A theory T is said to be preserved under substructures modulo k-cruxes, abbre-

viated as T is PSC(k), if for every model A of T , there exists a set C of at most k elements of

A such that every substructure of A, that contains C, is also a model of T . The set C is called a

k-crux of A with respect to T . A sentence φ is said to be PSC(k) if the theory {φ} is PSC(k).

It is easy to see that PSC(0) is exactly the property of preservation under substructures. Like-

wise, on the dual front, we introduce the notion of preservation under k-ary covered extensions,

denoted PCE(k), as a natural generalization of the property of preservation under extensions,

that is equivalent to the negation of the property of PSC(k). The generalized Łoś-Tarski theo-

rem for sentences at level k, denoted GLT(k), gives syntactic characterizations for PSC(k) and

PCE(k), and is as stated below.

Theorem 2 (GLT(k)). The following hold over arbitrary structures for each k ∈ N.

1. An FO sentence is PSC(k) if, and only if, it is equivalent to an ∃k∀∗ sentence.

2. An FO sentence is PCE(k) if, and only if, it is equivalent to a ∀k∃∗ sentence.

We call Theorem 2(1) the substructural version of GLT(k), and Theorem 2(2) the extensional

version of GLT(k). To the best of our knowledge, this characterization is the first to relate

natural quantitative properties of models of sentences in a semantic class to counts of leading

quantifiers in equivalent ∃∗∀∗ or ∀∗∃∗ sentences.

Moving towards ∃k∀∗ and ∀k∃∗ theories, we show that the extensional version of GLT(k) ex-

tends to ∀k∃∗ theories as well. Intriguingly however, on the substructural front, even ∃∀∗ theo-



ries, i.e. theories of Σ0

2
sentences in which each sentence has exactly one existential quantifier,

turn out to be too “powerful” for PSC(k).

Theorem 3. The following hold over arbitrary structures for each k ∈ N.

1. An FO theory is PCE(k) if, and only if, it is equivalent to a theory of ∀k∃∗ sentences.

2. An FO theory that is PSC(k) is always equivalent to a Σ0

2
theory. The converse is not

true in general: there exists a theory of ∃∀∗ sentences that is not PSC(l) for any l ∈ N.

Part (2) of Theorem 3, while showing that a PSC(k) theory is always equivalent to a Σ0

2
theory,

does not tell us anything about the maximum number of existential quantifiers that can appear in

any sentence of the Σ0

2
theory. Analogous to part (1) of Theorem 2, it is natural to ask whether a

PSC(k) theory is equivalent to a theory of ∃k∀∗ sentences. We provide a affirmative answer to

this question conditioned on a hypothesis that we describe below, thereby conditionally refining

Part (2) of Theorem 3.

To state the hypothesis, we introduce a little bit of terminology. Given a structure A and a

k-tuple ā of elements of A, the Π0

1
type of ā in A is the set of all Π0

1
formulae having k free

variables, that are true of ā in A. For a PSC(k) theory T and a model A of T , let C be a k-crux

of T and let ā be a k-tuple formed out of C. We say that the Π0

1
type of ā determines a k-crux,

if for any structure B, it is the case that if B contains a k-tuple b̄ that satisfies in B, all the

formulae in the Π0

1
type of ā in A, thenB is a model of T and the elements of b̄ form a k-crux

inB. (Following the parlance used in the classical model theory literature, a tuple b̄ of the kind

just mentioned is said to realize the Π0

1
type of ā in A). We now make the following hypothesis

which we argue is well-motivated and plausible.

Hypothesis 4. Let T be a PSC(k) theory. Then every model A of T contains a k-crux C such

that for any k-tuple ā constructed from C, the Π0

1
type of ā in A determines a k-crux.

Theorem 5 (Conditional refinement of Theorem 3(2)). Assuming Hypothesis 4 holds, a PSC(k)

theory is always equivalent to a theory of ∃k∀∗ sentences.

However from Part (2) of Theorem 3, we know that PSC(k) theories cannot characterize ∃k∀∗

theories, since the latter subsume ∃∀∗ theories. This question of characterization of ∃k∀∗ theo-

ries remains open.

The above results give new semantic characterizations of the classes ofΣ0

2
andΠ0

2
sentences; the

property that says that a sentence is PSC(k), respectively PCE(k), for some k, characterizes



Σ0

2
and Π0

2
sentences. For Σ0

2
and Π0

2
theories however, the situation is different. It turns out that

Π0

2
theories are strictly more general than PCE(k) theories for each k. That Σ0

2
theories, why

in fact even ∃∀∗ theories, cannot be subsumed by PSC(k) theories for any k, has already been

mentioned above. To still get a characterization of Σ0

2
and Π0

2
theories by staying within the

ambit of the flavour of our preservation properties, we introduce the properties of PSC(λ) and

PCE(λ) for an infinite cardinal λ. The property PSC(λ) asserts the existence of a crux of size

less than λ in any model, while PCE(λ) is defined such that it is equivalent to the negation of

PSC(λ). We show that these properties indeed respectively characterize Σ0

2
and Π0

2
theories,

thereby giving new characterizations of the latter.

Theorem 6. The following hold over arbitrary structures.

1. For each λ ≥ ℵ1, an FO theory is PSC(λ) if, and only if, it is equivalent to a Σ0

2
theory.

2. For each λ ≥ ℵ0, an FO theory is PCE(λ) if, and only if, it is equivalent to a Π0

2
theory.

This completes the description of our results in the classical model theory context. We present

various directions for future work, and sketch how natural generalizations of the properties of

PSC(k) and PCE(k) can be used to get finer characterizations ofΣ0

n andΠ
0

n sentences/theories

for n > 2, analogous to the finer characterizations of Σ0

2
and Π0

2
sentences/theories by PSC(k)

and PCE(k).

We conclude this section of the introduction by describing the techniques used in proving our

results. For GLT(k), we first show that this result holds over a special class of structures that are

λ-saturated, where λ is an infinite cardinal. Then using the fact that for any structure A, there is

always a λ-saturated structure for some suitable λ, that satisfies exactly the same FO sentences

as A, we “transfer” the validity of GLT(k), from that over λ-saturated structures, to that over

all structures. We give also a different proof of GLT(k) using ascending chains of structures.

Similar proofs work for the characterization of PCE(k) and PCE(λ) theories.

To show that PSC(k) and PSC(λ) theories are equivalent toΣ0

2
theories, we use Keisler’s char-

acterization of Σ0

2
theories in terms of a preservation property defined in terms of 1-sandwiches,

and show that any theory that is PSC(k) or PSC(λ) satisfies this preservation property, whereby

its equivalence with a Σ0

2
theory follows. The proof of Theorem 5 is the most involved of all our

proofs. It introduces a novel technique of getting a syntactically defined FO theory equivalent

to a given FO theory satisfying a semantic property, by going outside of FO. Specifically, for the

case of PSC(k) theories, under Hypothesis 4, we first “go up” into an infinitary logic and show

that a PSC(k) theory can be characterized by sentences of this logic. We then “come down”



back to FO by providing a translation of sentences of the aforesaid infinitary logic, into their

equivalent FO theories, whenever these sentences are known to be equivalent to FO theories.

The FO theories are obtained from suitable finite approximations of the infinitary sentences, and

turn out to be theories of ∃k∀∗ sentences. The “coming down” process can be seen as a “com-

pilation” process (in the sense of compilers used in computer science) in which a “high level”

description – via infinitary sentences that are known to be equivalent to FO theories – is trans-

lated into an equivalent “low level” description – via FO theories. We believe this technique

of accessing the descriptive power of an infinitary logic followed by accessing the translation

power of “compiler results” of the kind just mentioned, may have many applications.

Results in the finite model theory context

While the failure of the Łoś-Tarski theorem in the finite shows that universal sentences cannot

capture in the finite, the property of preservation under substructures, we show below a stronger

result.

Proposition 7. There exists a vocabulary τ such that if S is the class of all finite τ -structures,

then for each k ≥ 0, there exists an FO(τ ) sentence ψk that is preserved under substructures

over S , but that is not equivalent over S to any ∃k∀∗ sentence. It follows that there is a sentence

that is PSC(k) over S (ψk being one such sentence) but that is not equivalent over S to any

∃k∀∗ sentence.

The above result therefore shows the failure of GLT(k) over all finite structures, for all k ≥ 0.

Furthermore, as already mentioned earlier, we show GLT(k) also fails in general for each k ≥ 2,

over the special classes of finite structures that are acyclic, of bounded degree or of bounded

tree-width, that were shown in [4] to satisfy the Łoś-Tarski theorem. This is because of the

following result. Below, hereditary means closed under induced subgraphs. Also a class S of

directed graphs has bounded induced path lengths, if the class of undirected graphs underlying

the graphs of S has bounded induced path lengths.

Proposition 8. Let V be a hereditary class of undirected graphs. Let S be the class of all

directed graphs whose underlying undirected graph belongs to V . If GLT(k) holds over S , then

S has bounded induced path lengths.



To “recover” GLT(k) in the face of the above failures, we define the L-equivalent bounded

substructure property, denoted L-EBSP(S, k), where L is either FO or MSO, S is a class of

finite structures, and k is a natural number. In the definition below, structuresB and A are said

to be (m,L)-similar ifB and A agree on all L sentences of quantifier nesting depthm.

Definition 9 (L-EBSP(S, k)). Let S be a class of finite structures, k be a natural number and L

be one of the logics FO or MSO. We say that S satisfies the L-equivalent bounded substructure

property for parameter k, abbreviated L-EBSP(S, k) is true, if given a structure A in S , a subset

W of at most k elements ofA, and a natural numberm, there exists a bounded substructureB of

A containingW , that is in S and that is (m,L)-similar toA. The bound on the size ofB depends

only onm (if S and k are fixed). If this bound is computable, then we say L-EBSP(S, k) holds

with computable bounds.

Thus if a structure in S satisfies a property that can be expressed using an L sentence, then

there is a bounded substructure of it in S that also satisfies the same property, where the bound

depends only on the quantifier nesting depth of the sentence.

A reader familiar with the downward Löwenheim-Skolem theorem will immediately recog-

nize the close resemblance of L-EBSP(·, k) with the model-theoretic property that the former

theorem talks about. The downward Löwenheim-Skolem theorem says that given an arbitrary

structure A over a countable vocabulary and a countable setW of elements of A, there exists a

countable substructureB of A containingW , that is “FO-similar” to A, in thatB agrees with A

on all FO sentences. Thus if arbitrary structure satisfies an FO expressible property, then there

is a countable substructure of it that also satisfies the same property. Indeed then, L-EBSP(·, k)

can be well regarded as a finitary analogue of the downward Löwenheim-Skolem property.

It turns out thatL-EBSP(S, k) entails not only GLT(k) but also the homomorphism preservation

theorem (HPT).

Theorem 10. Let S be a class of finite structures and k ∈ N be such that L-EBSP(S, k) holds.

Then both GLT(k) and HPT hold over S. Furthermore, if L-EBSP(S, k) holds with computable

bounds, then effective versions of GLT(k) and HPT hold over S .

We then show that a variety of classes of finite structures, that are of interest in computer science

and finite model theory, satisfy L-EBSP(·, k), and furthermore with computable bounds. The

classes that we consider are broadly of two kinds: special kinds of labeled posets and special

kinds of graphs. For the case of labeled posets, we have the following result.



Theorem 11. Given a finite alphabet Σ and a function ρ : Σ → N, let Words(Σ),

Unordered-trees(Σ), Ordered-trees(Σ), Ordered-ranked-trees(Σ, ρ) and Nested-words(Σ) de-

note respectively, the classes of all Σ-words, all unordered Σ-trees, all ordered Σ-trees, all

ordered Σ-trees ranked by ρ, and all nested Σ-words. Let S be a regular subclass of any of

these classes. Then L-EBSP(S, k) holds with computable bounds for each k ∈ N.

While words and trees have had a long history of studies in the literature, nested words are much

recent [2], and have attracted a lot of attention as they admit a seamless generalization of the

theory of regular languages and are also closely connected with visibly pushdown languages [1].

For the case of graphs, we show the following result.

Theorem 12. Given n, k ∈ N, let Labeled-n-partite-cographs(Σ) be the class of all Σ-labeled

n-partite cographs. Let S be any subclass of Labeled-n-partite-cographs(Σ), that is hereditary

over the latter. Then L-EBSP(S, k) holds with computable bounds. Consequently, each of the

following classes of graphs satisfies L-EBSP(·, k) with computable bounds for each k ≥ 0.

1. Any hereditary class of n-partite cographs, for each n ∈ N.

2. Any hereditary class of graphs of bounded shrub-depth.

3. Any hereditary class of graphs of bounded SC-depth.

4. Any hereditary class of graphs of bounded tree-depth.

5. Any hereditary class of cographs.

The class of n-partite cographs, introduced in [17], jointly generalizes the classes of cographs,

graph classes of bounded tree-depth, those of bounded shrub-depth and those of bounded SC-

depth. The importance of the latter graph classes is that they have various interesting finiteness

properties, and have become very prominent in the context of fixed parameter tractability of

MSOmodel checking, and in the context of investigating when FO equals MSO in its expressive

power [11, 15, 16, 26]. The notion of tree-depth plays a very important role in the proof of HPT

over all finite structures, and the latter theorem was a long standing open problem in finite model

theory.

We next give ways to construct new classes of structures satisfying L-EBSP(·, ·) from known

ones by showing various closure properties of L-EBSP(·, ·). Firstly, we show that L-EBSP(·, ·)

is closed under taking subclasses that are hereditary or L-definable, and is also closed under

finite intersections and finite unions. We next consider operations on structures that are im-

plementable using quantifier-free translation schemes; examples of these include disjoint union



and various products (cartesian, tensor, strong, lexicographic), and show the following result.

Call an n-ary operation “sum-like”, respectively “product-like”, if it can be implemented us-

ing a quantifier-free translation scheme that “acts on” the disjoint union, respectively cartesian

product, of the inputs of the operation [28].

Theorem 13. Let S be a class of structures. Let O be an n-ary operation and O(S) be the class

of structures obtained by applying O to the structures of S . Then the following hold for each

k ∈ N.

1. If MSO-EBSP(S, k) is true, then so is MSO-EBSP(O(S), k), whenever O is sum-like.

2. If FO-EBSP(S, k · n) is true, then so is FO-EBSP(O(S), k), whenever O is product-like.

In each of the implications above, if the antecedent holds with computable bounds, then so does

the consequent.

It follows that finite unions of classes obtained by finite compositions of the aforesaid operations

also satisfies L-EBSP(·, ·). However, many interesting classes of structures can be obtained

only by taking infinite unions of the kind just described, a notable example being the class

of hamming graphs of the n-clique [21]. We show that if the aforementioned infinite unions

are “regular” in a sense that we make precise below, then L-EBSP(·, 0) is preserved under these

unions, under reasonable assumptions on the operations. Whereby, the class of hamming graphs

of the n-clique satisfies FO-EBSP(·, 0), as does the class of p-dimensional grid posets, where

p belongs to any MSO definable (using a linear order) class of natural numbers (like, even

numbers).

Given a finite set Op of sum-like or product-like operations on structures, a finite composition

of such operations can be represented as an operation tree over Op in which the internal nodes

are labeled with operations from Op, the number of children of any internal node equals the

arity of the operation labeling the node, and all leaf nodes are labeled with a symbol, say �,

which is a place-holder for an “input” structure. When the operation tree is “applied” to a class

of structures, it produces another class of structures. Generalizing, a class V of operation trees

over Op, applied to a class S of structures, produces a class V(S) of structures which is the

union of the classes of structures produced by each operation tree in V . If V is finite, then it

follows from Theorem 13 and the closure of L-EBSP(·, ·) under finite unions, that L-EBSP(·, ·)

is also closed under V (for appropriate L). However, important classes of structures like the

aforementioned class of hamming graphs of the n-clique can be produced only by considering

infinite V . Our result below shows the closure ofL-EBSP(S, 0) under infinite V provided that V ,



seen as a language of trees, is regular, and that the operations ofOp aremonotone (inputs embed

into the output) and ≡m,L-preserving ((m,L)-similar inputs produce (m,L)-similar outputs).

Theorem 14. LetOp be a finite set of sum-like or product-like operations, where each operation

in Op is monotone and ≡m,L-preserving. Let V be a class of operation trees over Op, that is

regular. Let S be a class of structures. If L-EBSP(S, 0) is true, then so is L-EBSP(V(S), 0).

Further, if L-EBSP(S, 0) holds with computable bounds, then so does L-EBSP(V(S), 0).

The proofs of the above results rely on tree-representations of structures, and proceed by per-

forming appropriate “prunings” of, and “graftings” within, these trees, while preserving the

substructure and “(m,L)-similarity” relations between the structures represented by these trees.

The process eventually yields small subtrees that represent bounded (m,L)-equivalent substruc-

tures of the original structure. The aforementioned prunings and graftings make use of compo-

sition lemmas of the Feferman-Vaught kind, or composition-like lemmas, in all the cases [28].

Finally, we present two additional observations about the L-EBSP(·, k) property. Firstly, since

L-EBSP(S, k) entails the “small model property” for L over S , the satisfiability problem for

L is decidable over S . Secondly, we show the following surprising connection between well-

quasi-ordering (w.q.o.) under embedding and L-EBSP(·, 0).

Theorem 15. If S is w.q.o. under embedding, then L-EBSP(S, 0) is true.

The notion of w.q.o. is very important in the literature. For instance, one of the many features

of a w.q.o. class is that checking membership in any hereditary subclass can be done efficiently

(i.e. in polynomial time). Theorem 15 gives a technique to show the L-EBSP(·, 0) property for

a class, namely by showing that the class is w.q.o. under embedding. And flipped around, it

also gives a “logic-based” tool to show that a class of structures is not w.q.o. under embedding,

namely by showing that the class does not satisfy L-EBSP(·, 0).

We conclude by presenting various directions for future work, notable amongst these being

two questions, one concerning L-EBSP(·, k), and the other concerning a variant of GLT(k).

The former asks for an investigation of a structural characterization of L-EBSP(·, k), motivated

by the observation that any hereditary class of graphs satisfying L-EBSP(·, k) has bounded

induced path lengths. The latter asks for an investigation of whether the property
�

k≥0
PSC(k)

characterizes Σ0

2
over all finite structures. Indeed, the failure of GLT(k) over all finite structures

does not rule out this possibility. Since
�

k≥0
PSC(k) characterizesΣ0

2
over arbitrary structures,



the truth of this characterization over all finite structures would give a new preservation theorem,

that is different from HPT, and that holds in the finite.

Conclusion

In summary, the properties introduced in this thesis are interesting in both the classical and finite

model theory contexts, and yield in both these contexts, a new and natural generalization of the

classical Łoś-Tarski preservation theorem.
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