
A Finitary Analogue of the Downward
Löwenheim-Skolem Property
Abhisekh Sankaran

Department of Computer Science and Engineering, Indian Institute of Technology
Bombay, Bombay, India
abhisekh@cse.iitb.ac.in

Abstract
We present a model-theoretic property of finite structures, that can be seen to be a finitary
analogue of the well-studied downward Löwenheim-Skolem property from classical model theory.
We call this property the L-equivalent bounded substructure property, denoted L-EBSP, where L
is either FO or MSO. Intuitively, L-EBSP states that a large finite structure contains a small
“logically similar” substructure, where logical similarity means indistinguishability with respect
to sentences of L having a given quantifier nesting depth. It turns out that this simply stated
property is enjoyed by a variety of classes of interest in computer science: examples include regular
languages of words, trees (unordered, ordered or ranked) and nested words, and various classes
of graphs, such as cographs, graph classes of bounded tree-depth, those of bounded shrub-depth
and n-partite cographs. Further, L-EBSP remains preserved in the classes generated from the
above by operations that are implementable using quantifier-free translation schemes. All of the
aforementioned classes admit natural tree representations for their structures. We use this fact to
show that the small and logically similar substructure of a large structure in any of these classes,
can be computed in time linear in the size of the tree representation of the structure, giving
linear time fixed parameter tractable (f.p.t.) algorithms for checking L-definable properties of
the large structure. We conclude by presenting a strengthening of L-EBSP, that asserts “logical
self-similarity at all scales” for a suitable notion of scale. We call this the logical fractal property
and show that most of the classes mentioned above are indeed, logical fractals.

1998 ACM Subject Classification F.4.1 Model theory, F.4.3 Formal Languages, G.2.2 Graph
theory

Keywords and phrases downward Löwenheim-Skolem theorem, trees, nested words, tree-depth,
cographs, tree representation, translation schemes, composition lemma, f.p.t., logical fractal

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.37

1 Introduction

The downward Löwenheim-Skolem theorem is one of the earliest results of classical model
theory. This theorem, first proved by Löwenheim in 1915 [22], states that if a first order
(henceforth, FO) theory over a countable vocabulary has an infinite model, then it has a
countable model. In the mid-1920s, Skolem came up with a more general statement: any
structure A over a countable vocabulary has a countable “FO-similar” substructure. Here,
“FO-similarity” of two given structures means that the structures agree on all properties
that can be expressed in FO. This result of Skolem was further generalized by Mal’tsev in
1936 [24], to what is considered as the modern statement of the downward Löwenheim-Skolem
theorem: for any infinite cardinal κ, any structure A over a countable vocabulary has an
elementary substructure (an FO-similar substructure having additional properties) that has
size at most κ. The downward Löwenheim-Skolem theorem is one of the most important

© Abhisekh Sankaran;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 37; pp. 37:1–37:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 A Finitary Analogue of the Downward Löwenheim-Skolem Property

results of classical model theory, and indeed as Lindström showed in 1969 [21], FO is a
maximal logic (having certain well-defined and reasonable closure properties) that satisfies
this theorem, along with the (countable) compactness theorem.

The downward Löwenheim-Skolem theorem is intrinsically, a statement about infinite
structures, and hence does not make sense in the finite when taken as is. While preservation
and interpolation theorems from classical model theory have been actively studied over finite
structures [16, 1, 26, 27, 3, 17], there is very little study of the downward Löwenheim-Skolem
theorem (or adaptations of it) in the finite ([13, 34] seem to be the only studies of this
theorem in the contexts of finite and pseudo-finite structures respectively). In this paper, we
take a step towards addressing this issue. Specifically, we formulate a finitary analogue of the
model-theoretic property contained in the downward Löwenheim-Skolem theorem, and show
that classes of finite structures satisfying this analogue indeed abound in computer science.
We call this analogue the L-equivalent bounded substructure property, denoted L-EBSP, where
L is either FO or monadic second order logic (MSO). Intuitively, a class S of finite structures
satisfies L-EBSP if over S, for each m, every structure A contains a small substructure B

that is “L [m]-similar” to A, where L [m] is the class of all sentences of L that have quantifier
nesting depth at most m (Definition 3.1). In other words, B and A agree on all properties
that can be described in L[m]. The bound on the size of B is given by a “witness function”
that depends only on m (when L and S are fixed). It is easily seen that L-EBSP has strong
resemblance to the model-theoretic property contained in the downward Löwenheim-Skolem
theorem, and can very well be seen as a finitary analogue of a version of this theorem that is
“intermediate” between its versions by Skolem and Mal’tsev.

The motivation to define L-EBSP came from our investigations over finite structures, of
a generalization of the classical Łoś-Tarski preservation theorem from model theory, that
was proved in [31]. This generalization, called the generalized Łoś-Tarski theorem at level k,
denoted GLT(k), gives a semantic characterization, over arbitrary structures, of sentences
in prenex normal form, whose quantifier prefixes are of the form ∃k∀∗, i.e. a sequence of k
existential quantifiers followed by zero or more universal quantifiers. The Łoś-Tarski theorem
is a special case of GLT(k) when k equals 0. Unfortunately, GLT(k) fails over all finite
structures for all k ≥ 0 (like most preservation theorems do [26]), and worse still, also fails for
all k ≥ 2, over the special classes of finite structures that are acyclic, of bounded degree, or
of bounded tree-width, which were identified by Atserias, Dawar and Grohe [3] to satisfy the
Łoś-Tarski theorem. This motivated the search for new (and possibly abstract) structural
properties of classes of finite structures, that admit GLT(k) for each k. It is in this context
that a version of L-EBSP was first studied in [30]. The present paper takes that study much
ahead. (Most of the results of this paper are from the author’s Ph.D. thesis [28].)

Our results. We show that a variety of classes of finite structures of interest in computer
science satisfy L-EBSP, demonstrating that the latter property provides a unified framework,
via logic, for studying these classes. The classes that we consider are broadly of two kinds:
special kinds of labeled posets and special kinds of graphs. For the case of labeled posets, we
show L-EBSP holds for words, trees (of various kinds such as unordered, ordered, ranked,
or “partially” ranked), and nested words over a finite alphabet, and all regular subclasses
of these (Theorem 5.1). For each of these classes, we also show that L-EBSP holds with
computable witness functions. While words and trees have had a long history of studies in
the literature, nested words are much recent [2], and have attracted a lot of attention as
they admit a seamless generalization of the theory of regular languages, and are also closely
connected with visibly pushdown languages. For the case of graphs, we show L-EBSP holds

A. Sankaran 37:3

for a very general, and again very recently defined, class of graphs called n-partite cographs,
and all hereditary subclasses of this class (Theorem 5.2). This class of graphs, introduced
in [12], jointly generalizes the classes of cographs (which includes several interesting graph
classes such as complete r-partite graphs, Turan graphs, cluster graphs, threshold graphs,
etc.), graph classes of bounded tree-depth and those of bounded shrub-depth. Cographs
have been well studied since the ’80s and have been shown to admit fast algorithms for
many decision and optimization problems that are hard in general [19]. Graph classes of
bounded tree-depth and bounded shrub-depth are much more recently defined [25, 12] and
have become particularly prominent in the context of investigating fixed parameter tractable
(f.p.t.) algorithms for MSO model checking, that have elementary dependence on the size of
the MSO sentence (which is the parameter) [11, 12]. This line of work seeks to identify classes
of structures for which Courcelle-style algorithmic meta-theorems [15] hold, but with better
dependence on the parameter than in the case of Courcelle’s theorem (which is unavoidably
non-elementary [10]). A different and important line of work shows that FO and MSO
are equal in their expressive powers over graph classes of bounded tree-depth/shrub-depth
[11, 8]. Since each of the graph classes mentioned above is a hereditary subclass of the class
of n-partite cographs for some n, each of these satisfies L-EBSP, further with computable
witness functions, and further still, with even elementary witness functions in many cases.

We give methods to construct new classes of structures satisfying L-EBSP from those
known to satisfy the latter property. Specifically, we show that L-EBSP remains preserved
under a wide range of operations on structures, that have been well-studied in the literature:
unary operations like complementation, transpose and the line graph operation, binary “sum-
like” operations [23] such as disjoint union and join, and binary “product-like” operations that
include the Cartesian, tensor, lexicographic and strong products. All of these are examples
of operations that can be implemented using quantifier-free translation schemes [23]. We
show that FO-EBSP is always closed under such operations, and MSO-EBSP is closed under
such operations, provided that they are unary or sum-like (Theorem 5.3). In both cases, the
computability/elementariness of witness functions is preserved under the operations.

As algorithmic consequences of the above results, we obtain linear time f.p.t. algorithms
for model checking L-definable properties of structures, over all of the aforementioned classes.
Each of these classes, including those generated using the various operations, admits natural
tree representations for its structures. Specifically, for any structure, a tree representation of
it is such that any leaf node of the tree is labeled with a substructure (typically a simple
one), while any internal node is labeled with an operation that produces a new structure
upon being fed as input, the structures represented by the children of the internal node. Our
f.p.t. algorithms utilize the fact that the input structures are given in the form of these tree
representations, to perform model checking in time linear in the sizes of the representations.
The techniques used in our algorithms are based on the composition method from model
theory [7, 23, 33, 15]. This method, made prominent by the work of Feferman and Vaught [9],
allows inferring the sentences true in a structure composed of simpler structures, from the
latter structures. In our context, the method allows determining the “L[m]-similarity class”
of the output structure of an operation, from the multi-set of the L [m]-similarity classes of
the structures that are input to the operation. For operations having arbitrary finite arity, the
L[m]-similarity class of the output is determined only by a threshold number of appearances
of each L [m]-similarity class in the multi-set, with the threshold depending solely on m.
These technical features, in conjunction with the fact that index of the L [m]-similarity
relation is always finite, facilitate us in algorithmically generating the “composition functions”
uniformly for any operation for any given m. The functions for any operation, in turn, enable

CSL 2017

37:4 A Finitary Analogue of the Downward Löwenheim-Skolem Property

doing the compositions in time linear in the arity of the operation. Using the latter fact,
given a tree representation, we perform appropriate annotations, prunings and graftings in
the tree iteratively, to produce in time linear in the size of the tree, a small subtree that
represents a small L [m]-similar substructure – the “kernel”, in the f.p.t. parlance – of the
structure represented by the given tree. Checking an L [m]-definable property of the original
structure then reduces to checking the same of the kernel. The above techniques have been
incorporated into a single abstract result concerning tree representations (Theorem 4.2).
Given that this result gives unified explanations for the good computational properties of
many interesting classes, we believe it might be of independent interest.

Finally, we present a strengthened version of L-EBSP, that turns out to be closely
connected with the fractal property which has been extensively studied in mathematics, and
in connection with a variety of natural phenomena [4]. Fractals are classes of mathematical
structures that exhibit self-similarity at all scales. That is, every structure in the class
contains a similar (in some technical sense) substructure at every scale of sizes less than
the size of the structure. In this light, we observe that L-EBSP indeed asserts “logical
self-similarity” at “small scales”. We formulate a strengthening of L-EBSP, that asserts
logical self-similarity at all scales, for a suitable notion of scale (Definition 6.1). We call this
the logical fractal property, and call a class satisfying this property a logical fractal. It turns
out that all of the aforementioned examples of poset and graph classes are logical fractals
(Proposition 6.2). Further, all of the aforementioned operations on structures preserve
the logical fractal property. The latter property thus appears to be naturally arising in
diverse interesting settings of computer science. This suggests that adapting concepts from
(mathematical) fractal theory (for instance, fractal dimension) to their logical counterparts
can yield useful notions for finite model theory.

Paper organization. In Section 2, we introduce terminology and notation, and recall relevant
notions from the literature used in the paper. In Section 3, we define L-EBSP formally and
show that it holds for the class of “partially” ranked trees, which are trees in which some
subset of nodes are constrained to have degrees given by a ranking function. We use this
special class as a setting to illustrate our techniques, that we lift to tree representations of
structures in Section 4. In Section 5, we give applications of our abstract result to show
L-EBSP and the existence of linear time f.p.t. algorithms for L-model checking, in various
concrete settings, specifically those of posets and graphs mentioned earlier, and also classes
constructed using various well-studied operations. We present the notion of logical fractals
in Section 6, and conclude with open questions in Section 7.

2 Terminology and preliminaries

We assume familiarity with standard notions and notation of first order logic (FO) and
monadic second order logic (MSO) [20]. By L, we mean either FO or MSO. We consider
only finite vocabularies, represented by τ or ν, that contain only predicate symbols (and no
constant or function symbols), unless explicitly stated otherwise. All predicate symbols are
assumed to have positive arity. We denote by L(τ) the set of all L formulae over τ (and refer
to these simply as L formulae, when τ is clear from context). A sequence (x1, . . . , xk) of
variables is written as x̄. A formula ϕ whose free variables are among x̄, is denoted as ϕ(x̄).
Free variables are always first order. A formula with no free variables is called a sentence.
The rank of an L formula is the maximum number of quantifiers (first order as well as second
order) that appear along any path from the root to a leaf in the parse tree of the formula.

A. Sankaran 37:5

Finally, a notion or result stated for L means that the notion or result respectively, is stated
for both FO and MSO.

Standard notions of τ -structures (denoted A,B etc.; we refer to these simply as structures
when τ is clear from context), substructures (denoted A ⊆ B) and extensions are used
throughout the paper (see [20]). We assume all structures to be finite. As in [20], by
substructures, we always mean induced substructures. Given a structure A, we use UA to
denote the universe of A, and |A| to denote its cardinality. We denote by A ∼= B that A

is isomorphic to B, and by A ↪→ B that A is isomorphically embeddable in B. For an L
sentence ϕ, we denote by A |= ϕ that A is a model of ϕ. We denote classes of structures by
S, possibly with subscripts, and assume these to be closed under isomorphisms.

Let N and N+ denote the natural numbers including zero and excluding zero respectively.
Given m ∈ N and a τ -structure A, denote by Thm,L(A) the set of all L(τ) sentences of rank at
most m, that are true in A. Given a τ -structure B, we say that A and B are L[m]-equivalent,
denoted A ≡m,L B if Thm,L(A) = Thm,L(B). Given a class S of structures and m ∈ N, we
let ∆S,L,m denote the set of all equivalence classes of the ≡m,L relation over S. We denote
by ΛS,L : N→ N a fixed computable function with the property that ΛS,L(m) ≥ |∆S,L,m|.
It is known that ΛS,L always exists (see Proposition 7.5 in [20]). The notion of ≡m,L has
a characterization using Ehrenfeucht-Fräissé (EF) games for L. We point the reader to
Chapters 3 and 7 of [20] for results concerning these games.

We recall the notion of translation schemes from the literature [23] (known in the literature
by different names, like interpretations, transductions, etc). Let τ and ν be given vocabularies,
and t ≥ 1 be a natural number. Let x̄0 be a fixed t-tuple of first order variables, and for
each relation R ∈ ν of arity #R, let x̄R be a fixed (t×#R)-tuple of first order variables. A
(t, τ, ν,L)-translation scheme Ξ = (ξ, (ξR)R∈ν) is a sequence of formulas of L(τ) such that
the free variables of ξ are among those in x̄0, and for R ∈ ν, the free variables of ξR are
among those in x̄R. When t, ν and τ are clear from context, we call Ξ simply a translation
scheme, and t the dimension of Ξ. The translation scheme Ξ defines a map from τ -structures
to ν-structures [23]. Abusing notation slightly, we denote this map as Ξ again, and for a
class S of τ -structures, let Ξ(S) denote the class {Ξ(A) | A ∈ S}.

Given a class S of structures, we say that the model checking problem for L over S,
denoted MC(L,S), is fixed parameter tractable [15], in short f.p.t., if there exists an algorithm
Alg that when given as input an L sentence ϕ of rank m, and a structure A ∈ S, decides if
A |= ϕ, in time f(m) · |A|c, where f : N→ N is some computable function and c is a constant.
In this case, we say Alg is an f.p.t. algorithm for MC(L,S). We say Alg is a linear time
f.p.t. algorithm for MC(L,S) if it is f.p.t. for MC(L,S) and runs in time f(m) · |A| where as
before, f is a computable function and m is the rank of the input sentence.

The k-fold exponential function exp(n, k) is the function given inductively as: exp(n, 0) = n

and exp(n, l) = 2exp(n,l−1) for 0 ≤ l ≤ k. We call a function f : N→ N elementary if there
exists k such that f(n) = O(exp(n, k)), and call it non-elementary if it is not elementary.

Finally, we use the following standard abbreviations throughout the paper: ‘w.l.o.g’ for
‘without loss of generality’, ‘iff’ for ‘if and only if’, and ‘resp.’ for ‘respectively’.

3 The L-Equivalent Bounded Substructure Property

IDefinition 3.1 (L-EBSP(S)). Let S be a class of structures and L be either FO or MSO. We
say that S satisfies the L-equivalent bounded substructure property, abbreviated L-EBSP(S)
is true (alternatively, L-EBSP(S) holds), if there exists an increasing function θ(S,L) : N→ N
such that for each m ∈ N and each structure A of S, there exists a structure B such that

CSL 2017

37:6 A Finitary Analogue of the Downward Löwenheim-Skolem Property

(i) B ∈ S, (ii) B ⊆ A, (iii) |B| ≤ θ(S,L)(m), and (iv) B ≡m,L A. The conjunction of these
four conditions is denoted as L-EBSP-condition(S,A,B,m, θ(S,L)). We call θ(S,L) a witness
function for L-EBSP(S), and say L-EBSP(S) holds with a witness function θ(S,L).

We present below two simple examples of classes satisfying L-EBSP.
1. Let S be the class of all τ -structures, where all predicates in τ are unary. By a simple

FO-EF game argument, we see that FO-EBSP(S) holds with a witness function θ(S,FO) :
N→ N given by θ(S,FO)(m) = m · 2|τ |. In more detail: given A ∈ S, associate exactly one
of 2|τ | colors with each element a of A, where the colour gives the valuation of all predicates
of τ for a in A. Then consider B ⊆ A such that for each colour c, if Ac = {a | a ∈
UA, a has colour c in A}, then Ac ⊆ UB if |Ac| < m, else |Ac∩UB| = m. It is easy to verify
that FO-EBSP-condition(S,A,B,m, θ(S,FO)) holds. By a similar MSO-EF game argument,
MSO-EBSP(S) holds with a witness function given by θ(S,MSO)(m) = m · 2(|τ |+m).

2. Let S be the class of disjoint unions of undirected paths. It can be easily shown that for
any m, any two paths of length ≥ p = 3m are FO[m]-equivalent. Let A =

⊔
n≥0 in · Pn

where Pn denotes the path of length n, in ·Pn denotes the disjoint union of in copies of Pn,
and

⊔
denotes disjoint union. For n < p, let jn be such that jn = in if in < m and jn = m

if in ≥ m. For n = p, let jn = h =
∑
r≥p ir if h < m, else jn = m. If B =

⊔n=p
n=1 jn · Pn,

then by an FO-EF game argument, B satisfies FO-EBSP-condition(S,A,B,m, θ(S,FO))
where θ(S,FO)(m) =

∑n=p
n=0 m ·n. Then FO-EBSP(S) holds with a witness function θ(S,FO).

3.1 Partially ranked trees satisfy L-EBSP
In this subsection, we show that the class of ordered “partially” ranked trees satisfies L-EBSP
with computable witness functions, as well as admits a linear time f.p.t. algorithm for model
checking L sentences. This setting illustrates our reasoning and techniques that we lift in
Section 4 to the more abstract setting of tree representations of structures.

An unlabeled unordered tree is a finite poset P = (A,≤) with a unique minimal element
(called “root”), such that for each c ∈ A, the set {b | b ≤ c} is totally ordered by ≤. Informally
speaking, the Hasse diagram of P is an inverted (graph-theoretic) tree. We call A as the
set of nodes of P . We use the standard notions of leaf, internal node, ancestor, descendent,
parent, child, degree, height, and subtree in connection with trees. (We clarify that by height,
we mean the maximum distance between the root and any leaf of the tree, as against the
“number of levels” in the tree.) An unlabeled ordered tree is a pair O = (P,.) where P is
an unlabeled unordered tree and . is a binary relation that imposes a linear order on the
children of any internal node of P . Unless explicitly stated otherwise, we always consider
our trees to be ordered. It is clear that the above mentioned notions in connection with
unordered trees can be adapted for ordered trees. Given a countable alphabet Σ, a tree over
Σ, also called a Σ-tree, or simply tree when Σ is clear from context, is a pair (O, λ) where O
is an unlabeled tree and λ : A→ Σ is a labeling function, where A is the set of nodes of O.
We denote Σ-trees by s, t, x, y, u, v or z, possibly with numbers as subscripts. Given a tree t,
we denote the root of t as root(t). For a node a of t, we denote the subtree of t rooted at
a as t≥a, and the subtree of t obtained by deleting t≥a from t, as t − t≥a. Given a tree s
and a non-root node a of t, the replacement of t≥a with s in t, denoted t [t≥a 7→ s], is a tree
defined as follows. Assume w.l.o.g. that s and t have disjoint sets of nodes. Let c be the
parent of a in t. Then t [t≥a 7→ s] is defined as the tree obtained by deleting t≥a from t to
get a tree t′, and inserting (the root of) s at the same position among the children of c in t′,
as the position of a among the children of c in t. For s and t as just mentioned, suppose the
roots of both these trees have the same label. Then the merge of s with t, denoted t� s, is

A. Sankaran 37:7

defined as the tree obtained by deleting root(s) from s and concatenating the sequence of
subtrees hanging at root(s) in s, to the sequence of subtrees hanging at root(t) in t. Thus
the children of root(s) in s are the “new” children of root(t), and appear “after” the “old”
children of root(t), and in the order they appear in s.

Fix a finite alphabet Σ, and let Σrank ⊆ Σ. Let ρ : Σrank → N+ be a fixed function. We
say a Σ-tree t = (O, λ) is partially ranked by (Σrank, ρ) if for any node a of t, if λ(a) ∈ Σrank,
then the number of children of a in t is exactly ρ(λ(a)). Observe that the case of Σrank = Σ
corresponds to the notion of ranked trees that are well-studied in the literature [5]. Let
Partially-ranked-trees(Σ,Σrank, ρ) be the class of all ordered Σ-trees partially ranked by
(Σrank, ρ). The central result of this section is now as stated below.

I Proposition 3.2. Given Σ, a subset Σrank of Σ and ρ : Σrank → N+, let S be the class
Partially-ranked-trees(Σ,Σrank, ρ). Then the following are true:
1. L-EBSP(S) holds with a computable witness function. Further, any witness function is

necessarily non-elementary.
2. There is a linear time f.p.t. algorithm for MC(L,S).

We prove the two parts of the above result separately. In the remainder of this section,
we fix L, and also fix S to be the class Partially-ranked-trees(Σ,Σrank, ρ). Given these fixings,
we denote ∆S,L,m (the set of equivalence classes of the ≡m,L relation over S) simply as ∆m,
and denote ΛS,L(m) (see Section 2 for the definition of ΛS,L(m)) simply as Λ(m).
I Remark. As mentioned in the introduction, our techniques to prove Proposition 3.2, are
based on the “composition method” from model theory. One can also adopt automata based
techniques to prove Proposition 3.2. Specifically, part (1) can be shown using the “downward
direction” of the pumping lemma for such trees [5], while part (2) can be shown using
the automata based approach described in [32]. Though, admittedly, the automata based
approach is easier than the composition method for this special case of partially ranked trees,
the machinery that we develop in this (illustrative) section admits a direct and seamless
lifting to the abstract setting of tree representations that we consider in the next section.
The abstract setting enables us to uniformly show our L-EBSP and f.p.t. results for a wide
range of interesting concrete instantiations that we present in Section 5.

Towards the proof of Proposition 3.2, we first present an L-composition lemma for partially
ranked trees, that is the “functional form” of a Feferman-Vaught (FV) style L-composition
lemma for these trees (See Appendix A for an FV-style L-composition lemma for the more
general case of ordered trees.) Recall that S = Partially-ranked-trees(Σ,Σrank, ρ).

I Lemma 3.3 (Composition lemma for partially ranked trees). For each σ ∈ Σ and m ≥ 3, there
exists a function fσ,m : (∆m)ρ(σ) → ∆m if σ ∈ Σrank, and functions fσ,m,i : (∆m)i → ∆m

for i ∈ {1, 2} if σ ∈ Σ \ Σrank, with the following properties: Let t = (O, λ) ∈ S and a be an
internal node of t such that λ(a) = σ, and the children of a in t are b1, . . . , bn. Let δi be the
≡m,L class of t≥bi for i ∈ {1, . . . , n}, and let δ be the ≡m,L class of t≥a.
1. If σ ∈ Σrank (whereby n = ρ(σ)), then δ = fσ,m(δ1, . . . , δn).
2. If σ ∈ Σ \ Σrank, then δ is given as follows: For k ∈ {1, . . . , n − 1}, let χk+1 =

fσ,m,2(χk, δk+1) where χ1 = fσ,m,1(δ1). Then δ = χn.

A useful corollary of this lemma is as below.

I Corollary 3.4. The following are true for m ≥ 3.
1. Given trees s, t and a non-root node a of t, let z = t[t≥a 7→ s]. If s ≡m,L t≥a, then

z ≡m,L t.

CSL 2017

37:8 A Finitary Analogue of the Downward Löwenheim-Skolem Property

2. Let s1, s2, t be given trees such that the labels of their roots are the same, and belong to
Σ \ Σrank. Suppose zi = si � t for i ∈ {1, 2}. If s1 ≡m,L s2, then z1 ≡m,L z2.

3. Let s1, s2 be given trees such that the labels of their roots are the same, and belong to
Σ \ Σrank. For i ∈ {1, 2}, given ti, let zi be the tree obtained from si by adding ti as the
(new) “last” child subtree of the root of si. If s1 ≡m,L s2 and t1 ≡m,L t2, then z1 ≡m,L z2.

Proof sketch for part (1) of Proposition 3.2: The first half follows from the following
“reduction” lemma for trees. The second half follows from the fact that even over Σ-words
(Σ-labeled linear orders), the index of the ≡m,L relation depends non-elementarily on m [10].

I Lemma 3.5. There exist computable functions η1, η2 : N → N such that for each t ∈ S
and m ∈ N, the following hold:
1. (Degree reduction) There exists a subtree s1 of t in S, of degree ≤ η1(m), such that (i) the

roots of s1 and t are the same, and (ii) s1 ≡m,L t.
2. (Height reduction) There exists a subtree s2 of t in S, of height ≤ η2(m), such that (i) the

roots of s2 and t are the same, and (ii) s2 ≡m,L t.

Proof. For a finite subset X of N, let max(X) denote the maximum element of X.
(1) For n ≥ 3, define η1(n) = max({ρ(σ) | σ ∈ Σrank} ∪ {3}) × Λ(n). For n < 3, define

η1(n) = η1(3). We prove this part for m ≥ 3; then it follows that this part is also true for
m < 3 (by taking s1 for the m = 3 case as s1 for the m < 3 case).
Given m ≥ 3, let p = η1(m). If t has degree ≤ p, then putting s1 = t, we are
done. Else, some node a of t has degree n > p. Clearly then λ(a) /∈ Σrank. Let
z = t≥a and let a1, . . . , an be the (ascending) sequence of children of root(z) in z. For
1 ≤ j ≤ n, let x1,j , resp. yj+1,n, be the subtree of z obtained from z by deleting the
subtrees rooted at aj+1, . . . , an, resp. deleting the subtrees rooted at a1, a2, . . . , aj . Then
z = x1,n = x1,j � yj+1,n for 1 ≤ j < n. Let g : {1, . . . , n} → ∆m be such that g(j)
is the ≡m,L class of x1,j . Since n > p, there exist j, k ∈ {1, . . . , n} such that j < k

and g(j) = g(k), i.e. x1,j ≡m,L x1,k. If k < n, then let z1 = x1,j � yk+1,n, else let
z1 = x1,j . Then by Corollary 3.4, z1 ≡m,L z. Let t1 be the subtree of t in S given by
t1 = t [z 7→ z1]. By Corollary 3.4 again, t1 ≡m,L t. Observe that t1 has strictly lesser size
than t. Recursing on t1, we are eventually done.

(2) For n ≥ 3, define η2(n) = Λ(n) + 1. For n < 3, define η2(n) = η2(3). As before, it
suffices to prove this part for m ≥ 3.
Given m ≥ 3, let p = η2(m). If t has height ≤ p, then putting s2 = t, we are done. Else,
there is a path from the root of t to some leaf of t, whose length is > p. Let A be the set
of nodes appearing along this path. Let h : A→ ∆m be such that for each a ∈ A, h(a) is
the ≡m,L class of t≥a. Since |A| > p, there exist distinct nodes a, b ∈ A such that a is
an ancestor of b in t, a 6= root(t), and h(a) = h(b). Let t2 = t [t≥a 7→ t≥b]; then t2 is a
subtree of t in S. Since h(a) = h(b), t≥a ≡m,L t≥b. By Corollary 3.4, we get t2 ≡m,L t.
Note that t2 has strictly lesser size than t. Recursing on t2, we are eventually done.

J

Proof sketch for part (2) of Proposition 3.2: The following result contains the core
argument for the proof of this part. The first part of Lemma 3.6 gives an algorithm to
generate the “composition” functions of Lemma 3.3, uniformly for m ≥ 3. This algorithm is
in turn used in the second part of Lemma 3.6 to get a “linear time” version of Lemma 3.5.

I Lemma 3.6. There exist computable functions η3, η4, η5 : N → N and algorithms
Generate-functions(m), Reduce-degree(t,m) and Reduce-height(t,m) such that for m ≥ 3,

A. Sankaran 37:9

1. Generate-functions(m) generates in time η3(m), the functions fσ,m if σ ∈ Σrank and fσ,m,i
for i ∈ {1, 2} if σ ∈ Σ \ Σrank, that satisfy the properties mentioned in Lemma 3.3.

2. For t ∈ S, Reduce-degree(t,m) computes the subtree s1 of t as given by Lemma 3.5, in
time η4(m) · |t|. Likewise, Reduce-height(t,m) computes the subtree s2 of t as given by
Lemma 3.5, in time η5(m) · |t|.

Proof Sketch.
(1) We first observe that the L-SAT problem is decidable over S – since L-EBSP(S) holds

with a computable witness function (by Proposition 3.2(1)), if an L sentence has a model
in S, it also has a model of size bounded by a computable function of its rank.

Generate-functions(m)
1. Create a list L[m]-classes of the ≡m,L classes over S. This is done as follows:

a. Given the inductive definition of L[m], there is an algorithm P(m) that enu-
merates L[m] sentences ϕ1, ϕ2, . . . , ϕn such that each ϕi captures some class
in ∆All,L,m (the set of equivalence classes of the ≡m,L relation over all finite
structures), and conversely, each class of ∆All,L,m is captured by some ϕi. First
invoke P(m) to get the ϕis.

b. For each i ∈ {1, . . . , n}, if ϕi is satisfiable over S (whereby it represents some
equivalence class of the ≡m,L relation over S), then put it in L[m]-classes, else
discard it. (We interchangeably regard L[m]-classes as a list of L[m] sentences or
a list of ≡m,L classes.)

2. For σ ∈ Σrank and d = ρ(σ), generate gσ,m : (L[m]-classes)d → L[m]-classes as
follows. Given ξi ∈ L[m]-classes for i ∈ {1, . . . , d}, find models si for ξi in S. Let s
be the tree obtained by making s1, . . . , sn as the child subtrees (and in that sequence)
of a new root node labeled with σ. Find out ξ ∈ L[m]-classes of which s is a model.
Then define gσ,m(ξ1, . . . , ξd) = ξ. Generate gσ,m,1 : L[m]-classes → L[m]-classes
similarly.

3. For σ ∈ Σ \ Σrank, generate gσ,m,2 : (L[m]-classes)2 → L[m]-classes as follows. For
ξ1, ξ2 ∈ L[m]-classes, find models s1 and s2 resp. in S. such that the root of s1 is
labeled with σ (this condition on the root can be captured by an FO sentence). If
no s1 is found, then define gσ,m,2(ξ1, ξ2) = ξdefault where the latter is some fixed
element of L[m]-classes. Else, let vξ1,ξ2 be the tree obtained adding s2 as the (new)
“last” child subtree of the root of s1. Find out ξ ∈ L[m]-classes of which vξ1,ξ2 is a
model. Define gσ,m,2(ξ1, ξ2) = ξ.

It is clear that there exists a computable function η3 : N→ N such that the running time
of Generate-functions(m) is at most η3(m). We now claim that gσ,m and gσ,m,i generated
by Generate-functions(m) indeed satisfy the composition properties of Lemma 3.3, whereby
they can be indeed taken as fσ,m and fσ,m,i appearing in the latter lemma. That gσ,m
and gσ,m,1 satisfy the composition properties is easy to see using Corollary 3.4. To reason
for gσ,m,2, consider a tree t whose root is labeled with σ, and which has say 3 children
a1, . . . , a3 (and in that sequence) such that the ≡m,L class of t≥ai is δi for 1 ≤ i ≤ 3.
Consider the subtrees x and y of t defined as x = t− t≥a3 and y = x− x≥a2 . Let δ4 and δ5
be resp. the ≡m,L classes of x and y. Now consider the trees vδ5,δ2 and vδ4,δ3 which are
guaranteed to be found (since indeed x and y are trees each of whose roots is labeled with
σ). By Corollary 3.4, x ≡m,L vδ5,δ2 and t ≡m,L vδ4,δ3 . Whereby, the ≡m,L class of x is
δ4 = gσ,m,2(δ5, δ2) and that of t is δ = gσ,m,2(δ4, δ3). Observe that δ5 is indeed gσ,m,1(δ1).

CSL 2017

37:10 A Finitary Analogue of the Downward Löwenheim-Skolem Property

(2) Reduce-degree(t, m)
1. Call Generate-functions(m) that returns the “composition” functions fσ,m and fσ,m,i,

and also gives the list L[m]-classes as described above.
2. Using the composition functions, construct bottom-up in t, the function Colour :

Nodes(t)→ L[m]-classes such that for each node a of t, Colour(a) is the ≡m,L class
of t≥a.

3. For η1 as given by Lemma 3.5, if the degree of t is ≤ η1(m), then return t.
4. Else, let a be a node of t of degree n > η1(m). Let x = t≥a.
5. For each δ ∈ L[m]-classes, do the following:

a. Let a1, . . . , an be the children of a in x. For k ∈ {1, . . . , n}, let x1,k be the
subtree of x obtained by deleting the subtrees rooted at ak+1, . . . , an. Let
g : {1, . . . , n} → L[m]-classes be such that g(i) is the ≡m,L class of x1,k.

b. If δ appears in the range of g, then let i, j be resp. the least and greatest indices
in {1, . . . , n} such that g(i) = g(j) = δ. Let y be the subtree of x obtained by
deleting the subtrees rooted at ai+1, . . . , aj . Set x := y.

6. Set t := t[t≥a 7→ x] and go to step 3.
Reasoning similarly as for Lemma 3.5(1), we can verify that Reduce-degree(t,m) indeed
returns the desired subtree s1 of t. The time taken to compute Colour is linear in |t|, while
that for computing g is linear in the degree of a, whereby the time taken to reduce the
degree of a node a in any iteration of the loop, is O(Λ(m) · degree(a)). Then, the total
time taken by Reduce-degree(t,m) is O(α(m) + Λ(m) · |t|) for some computable function
α : N→ N.

Reduce-height(t, m)
1. Generate L[m]-classes and the function Colour as in the previous part.
2. Construct bottom up in t, the function Lowest-subtree : Nodes(t)× L[m]-classes→

Nodes(t) such that for any node a of t and δ ∈ L[m]-classes, Lowest-subtree(a, δ)
gives a lowest (i.e. closest to a leaf) node b in t≥a such that Colour(b) = δ. In other
words, b is the only node in t≥b such that Colour(b) = δ.

3. Let a1, . . . , an be the children of root(t). Let xi = Rainbow-subtree(t≥ai
) for i ∈

{1, . . . , n}, where Rainbow-subtree(x) is described below.
4. Return t[t≥a1 7→ x1] . . . [t≥an

7→ xn].

Rainbow-subtree(x)
1. Let a = root(x).
2. If b = Lowest-subtree(a,Colour(a)) 6= a, then return Rainbow-subtree(x≥b).
3. Else, let b1, . . . , bn be the children of root(x). For 1 ≤ i ≤ n, let

yi = Rainbow-subtree(x≥bi
).

4. Return x[x≥b1 7→ y1] . . . [x≥bn
7→ yn].

Using similar reasoning as in the proof of Lemma 3.5(2), we can verify that algorithm
Rainbow-subtree(x), that takes a subtree x of t as input, outputs a subtree y of x such
that (i) y ≡m,L x and (ii) no path from the root to the leaf of y contains two distinct
nodes a and b such that Colour(a) = Colour(b). Further, Rainbow-subtree(x) also satisfies
the following “colour preservation” property. Let for a subtree s of t, obtained from t by
removal of rooted subtrees and replacements with rooted subtrees, Q(s) be a predicate
that denotes that the function Colour computed for t, when restricted to the nodes of s,
is such that for any node a of s, Colour(a) gives the ≡m,L class of s≥a. Then the “colour

A. Sankaran 37:11

preservation” property says that if the input x to Rainbow-subtree satisfies Q(·), then so
does the output y of Rainbow-subtree.
From the preceding features of Rainbow-subtree, we see that the height of the output y
of Rainbow-subtree(x) is at most Λ(m). The number of “top level” recursive calls made
by Rainbow-subtree(x) is linear in the degree of root(x), whereby the total time taken by
Rainbow-subtree(x) is linear in |x|. The time taken to compute Lowest-subtree is easily seen
to be O(Λ(m) · |t|). Then the time taken by Reduce-height(t,m) is O(η3(m) + Λ(m) · |t|).
One can verify that Reduce-height(t,m) indeed returns the desired subtree s2 of t. J

4 Lifting to tree representations

We now consider the more abstract setting of tree representations of structures, and show
that under suitable conditions on these representations (that a variety of classes of structures
satisfy), we can lift the techniques seen in the previous section. Fix finite alphabets Σint
and Σleaf (where the two alphabets are allowed to be overlapping). Let Σrank ⊆ Σint. Let
ρ : Σint → N+ be a fixed function. We say a class T of (Σint ∪ Σleaf)-trees is representation-
feasible for (Σrank, ρ) if T is closed under (label-preserving) isomorphisms, and for all trees
t = (O, λ) ∈ T and nodes a of t, the following conditions hold:
1. Labeling condition: If a is a leaf node, resp. internal node, then the label λ(a) belongs to

Σleaf, resp. Σint.
2. Ranking by ρ: If a is an internal node and λ(a) is in Σrank, then the number of children

of a in t is exactly ρ(λ(a)).
3. Closure under rooted subtrees: The subtree t≥a is in T .
4. Closure under removal of rooted subtrees respecting Σrank: If a is an internal node, b is a

child of a in t and λ(a) /∈ Σrank, then the subtree (t− t≥b) is in T .
5. Closure under replacements with rooted subtrees: If a is an internal node, then for every

descendent b of a in t, the subtree t [t≥a 7→ t≥b] is in T .

Given such a class T of trees as above and a class S of structures, let Str : T → S be a
map that associates with each tree in T , a structure in S. We call Str a representation map.
For a tree t ∈ T , if A = Str(t), then we say t is a tree representation of A under Str. For the
purposes of our result, we consider “good” maps that would allow tree reductions of the kind
seen in the previous section. We formally define these below:

I Definition 4.1 (L-good representation maps). Let S be a class of structures and T be a
class of (Σint ∪ Σleaf)-trees that is representation-feasible for (Σrank, ρ). A representation
map Str : T → S is said to be L-good if it has the following properties:
1. Isomorphism preservation: Str maps isomorphic (labeled) trees to isomorphic structures.
2. Surjectivity: Each structure in S has an isomorphic structure in the range of Str.
3. Monotonicity: Let t ∈ T be a tree of size ≥ 2, and a be a node of t.

a. If s = t≥a, then Str(s) ↪→ Str(t).
b. If b is a child of a in t, λ(a) /∈ Σrank and z = (t− t≥b), then Str(z) ↪→ Str(t).
c. If b is a descendent of a in t and z = t [t≥a 7→ t≥b], then Str(z) ↪→ Str(t).

4. Composition: There exists m0 ∈ N such that for every m ≥ m0 and for every σ ∈ Σint,
there exists a function fσ,m : (∆S,L,m)ρ(σ) → ∆S,L,m if σ ∈ Σrank, and functions
fσ,m,i : (∆S,L,m)i → ∆S,L,m for i ∈ {1, . . . , ρ(σ)} if σ ∈ Σint \ Σrank, with the following
properties: Let t = (O, λ) ∈ T and a be an internal node of t such that λ(a) = σ, and let
the children of a in t be b1, . . . , bn. Let δi be the ≡m,L class of Str(t≥bi) for i ∈ {1, . . . , n},
and let δ be the ≡m,L class of Str(t≥a).

CSL 2017

37:12 A Finitary Analogue of the Downward Löwenheim-Skolem Property

◦

bb

a ab
zy

wv

u

x

W = (abaabba,)

 = {(2, 6), (4, 5)}
Str(t≥y) = (a, ∅)
Str(t≥z) = (ab, {(1, 2)})
Str(t≥w) = (baabb, {(1, 5), (3, 4)})
Str(t≥u) = (abaabba, {(2, 6), (4, 5)})

a a

t

Figure 1 Nested word as a tree.

If σ ∈ Σrank (whereby n = ρ(σ)), then δ = fσ,m(δ1, . . . , δn).
If σ ∈ Σint \ Σrank, then δ is given as follows: Let d = ρ(σ) and n = r + q · (d − 1)
where 1 ≤ r < d. Let I = {r + j · (d − 1) | 0 ≤ j ≤ q} and for k ∈ I, k 6= n, let
χk+(d−1) = fσ,m,d(χk, δk+1, . . . , δk+(d−1)) where χr = fσ,m,r(δ1, . . . , δr). Then δ = χn.

We say S admits an L-good tree representation if there exists a representation map
Str : T → S that is L-good. We say an L-good representation map Str : T → S is effective
(resp. elementary) if (i) T is recursive and (ii) there is an algorithm that, given t ∈ T as input,
computes Str(t) (resp. computes Str(t) in time that is bounded by an elementary function of
|t|). We now present the central result of this section, which is a lifting of Proposition 3.2 to
tree representations. The proof involves an abstraction of all the ideas presented in proof of
Proposition 3.2. The details of the proof can be found in [29].

I Theorem 4.2. Let S be a class of structures that admits an L-good tree representation
Str : T → S. Then the following are true:
1. L-EBSP(S) holds.
2. If Str is effective, then there exists a computable witness function for L-EBSP(S). Further,

there exists a linear time f.p.t. algorithm for MC(L,S) that decides, for every L sentence
ϕ (the parameter), if a given structure A in S satisfies ϕ, provided that A is given in the
form of a tree representation of it under Str.

3. If Str is elementary, then there exists an elementary witness function for L-EBSP(S) iff
the index of the ≡m,L relation over S has an elementary dependence on m.

5 Applications to various concrete settings

A. Regular languages of words, trees and nested words. Let Σ be a finite alphabet. The
notion of unordered, ordered, ranked and partially ranked Σ-trees was already introduced
in Section 3.1. A Σ-tree whose underlying poset is a linear order is called a Σ-word. A
nested word over Σ is a pair (w,) where w is a “usual” Σ-word and is a binary relation
representing a “nested matching”. Formally, if (A,≤) is the linear order underlying w, then
 satisfies the following: (i) for i, j ∈ A, if i j, then i ≤ j and i 6= j (ii) for i ∈ A,
there is at most one j ∈ A such that i j and at most one l ∈ A such that l i, and
(iii) for i1, i2, j1, j2 ∈ A, if i1 j1 and i2 j2, then it is not the case that i1 < i2 ≤ j1 < j2.
(Nested words here correspond to those of [2] that have no pending calls or pending returns.)

For e.g., w = (abaabba, {(2, 6), (4, 5)}) is a nested word over {a, b}. A nested Σ-word
has a natural representation using a tree over Σint ∪ Σleaf, where Σleaf = Σ ∪ (Σ× Σ), and
Σint = (Σ×Σ)∪ {◦}. Figure 1 shows such a tree t for w. Conversely, every ordered tree over
(Σint ∪ Σleaf), whose leaf and internal node labels belong to Σleaf and Σint resp., represents a
nested Σ-word.

A. Sankaran 37:13

The notion of regular languages of words, trees (of all the aforementioned kinds) and
nested words, and its correspondence with MSO definability, are well-studied [5, 2]. We say a
class of words, trees or nested words is regular if it is the class of models of an MSO sentence.

I Theorem 5.1. Given finite alphabets Σ,Ω such that Ω ⊆ Σ, and a function ρ : Ω →
N, let Words(Σ), Unordered-trees(Σ), Ordered-trees(Σ), Partially-ranked-trees(Σ,Ω, ρ) and
Nested-words(Σ) denote resp. the classes of all Σ-words, all unordered Σ-trees, all ordered
Σ-trees, all ordered Σ-trees partially ranked by (Ω, ρ), and all nested Σ-words. Let S be a
regular subclass of any of these classes. Then L-EBSP(S) holds with a computable witness
function. Further, any witness function for L-EBSP(S) is necessarily non-elementary.

Proof Idea. We first show MSO-EBSP(S) holds when S is exactly one of the classes men-
tioned in the statement of the theorem. That L-EBSP(·) holds for a regular subclass follows,
because (i) MSO-EBSP(·) is preserved under MSO definable subclasses, and (ii) MSO-EBSP(·)
implies FO-EBSP(·). Consider S = Unordered-trees(Σ) (the other cases of trees have been
covered by Proposition 3.2). Let T1 be the class of all ordered (Σint ∪ Σleaf)-trees where
Σint = Σleaf = Σ; then T1 is representation-feasible for (Σrank, ρ) where Σrank = ∅ and ρ is
the constant function of value 2. There is now a natural representation map Str1 : T1 → S
such that Str1 “forgets” the ordering among the children of any node of its input tree. Using
an MSO composition lemma for unordered trees (see Appendix A), we can see that Str1
is an elementary MSO-good representation map, whereby using Theorem 4.2, we are done.
Consider S = Nested-words(Σ). For Σleaf = Σ ∪ (Σ× Σ) and Σint = (Σ× Σ) ∪ {◦}, if T2 is
the class of all ordered (Σint ∪Σleaf)-trees whose leaf labels belong to Σleaf and internal node
labels belong to Σint, then T2 is representation-feasible for (Σrank, ρ) where again Σrank = ∅
and ρ is the constant function 2. There is then a natural map Str2 : T2 → S as described
for the example above. By an MSO composition lemma for nested words (see Appendix A),
it follows that Str2 is an elementary MSO-good representation map. We are then done by
Theorem 4.2 again. The non-elementariness of witness functions is due to Theorem 4.2 and
the non-elementary dependence on m, of the index of the ≡m,L relation over words [10]. J

B. n-partite cographs. The class of n-partite cographs, introduced in [12], can be defined up
to isomorphism as the range of the map Str described as follows. Let Σleaf = [n] = {1, . . . , n}
and Σint = {f | f : [n] × [n] → {0, 1}}. Let T be the class of all ordered (Σint ∪ Σleaf)-
trees whose leaf labels belong to Σleaf and internal node labels belong to Σint. Then T is
representation-feasible for (Σrank, ρ) where Σrank = ∅ and ρ : Σint → N+ is the constant
function 2. Consider Str : T → Graphs defined as follows, where Graphs is the class of all
undirected graphs: For t = (O, λ) ∈ T where O = ((A,≤),.) is an ordered unlabeled tree
and λ is the labeling function, Str(t) = G = (V,E) is such that (i) V is exactly the set of leaf
nodes of t (ii) for a, b ∈ V , if c = a ∧ b is the greatest common ancestor (under ≤) of a and
b in t, then {a, b} ∈ E iff λ(c)(λ(a), λ(b)) = 1. We now have the following result. Below, a
Σ-labeled n-partite cograph is a pair (G, ν) where G is an n-partite cograph and ν : V → Σ
is a labeling function. Also, “hereditary” means “closed under substructures”.

I Theorem 5.2. Given n ∈ N and a finite alphabet Σ, let Labeled-n-partite-cographs(Σ)
be the class of all Σ-labeled n-partite cographs. Let S be any hereditary subclass of this
class. Then L-EBSP(S) holds with a computable witness function. Whereby, each of the
graph classes below satisfies L-EBSP(·) with a computable witness function. Further, the
classes with bounded parameters as mentioned below have elementary functions witnessing
L-EBSP(·).
1. Any hereditary class of n-partite cographs, for each n ∈ N.
2. Any hereditary class of graphs of bounded shrub-depth.

CSL 2017

37:14 A Finitary Analogue of the Downward Löwenheim-Skolem Property

3. Any hereditary class of graphs of bounded SC-depth.
4. Any hereditary class of graphs of bounded tree-depth.
5. Any hereditary class of cographs.

Proof Idea. We first show the result for S = Labeled-n-partite-cographs(Σ). The result for
the various specific classes mentioned in the statement follows from the fact that L-EBSP(·) is
closed under hereditary subclasses, and that all of the specific classes are hereditary subclasses
of n-partite cographs [12]. Let Σleaf = [n]× Σ and Σint = {f | f : [n]× [n]→ {0, 1}}. Then
consider the class T of ordered (Σint ∪ Σleaf)-trees and the representation map Str : T →
Labeled-n-partite-cographs(Σ) exactly of the respective kinds described above for n-partite
cographs. By an L-composition lemma for labeled n-partite cographs (see Appendix A),
we see that Str is elementary and L-good, whereby we are done by Theorem 4.2. That the
graph classes with the bounded parameters above have elementary witness functions follows
again from Theorem 4.2 and elementary dependence on m, of the index of the ≡m,L relation
over these classes (the latter follows from Theorem 3.2 of [11]). J

C. Classes generated using translation schemes. We look operations on classes of struc-
tures, that are “implementable” using quantifier-free translation schemes [23]. Given a
vocabulary τ , let τdisj-un,n be the vocabulary obtained by expanding τ with n fresh unary pre-
dicates P1, . . . , Pn. Given τ -structures A1, . . . ,An (assumed disjoint w.l.o.g.), the n-disjoint
sum of A1, . . . ,An, denoted

⊕i=n
i=1 Ai, is the τdisj-un,n-structure obtained upto isomorphism,

by expanding the disjoint union
⊔i=n
i=1 Ai with P1, . . . , Pn interpreted respectively as the

universe of A1, . . . ,An. Let S1, . . . ,Sn be given classes of structures. A quantifier-free
(t, τdisj-un,n, τ,FO)-translation scheme Ξ gives rise to an n-ary operation O : S1 × · · · × Sn →
{Ξ(

⊕i=n
i=1 Ai) | Ai ∈ Si, 1 ≤ i ≤ n} defined as O1(A1, . . . ,An) = Ξ(

⊕i=n
i=1 Ai). In this case,

we say that O is implementable using Ξ. We say an operation is quantifier-free, if it is of the
kind O just described. For a quantifier-free operation O, define the dimension of O to be
the minimum of the dimensions of the quantifier-free translation schemes that implement O.
We say O is “sum-like” if its dimension is one, else we say O is “product-like”. We say O is
monotone if any input of O is embeddable in the output of O. We say O obeys L-composition
if for each m, whenever an input of O is replaced with an L[m]-equivalent input, the output of
O is replaced with an L[m]-equivalent output. The well-studied unary graph operations like
complementation, transpose, and the line-graph operation, and binary operations like disjoint
union and join are all sum-like, monotone and obey L-composition. Likewise, the well-studied
Cartesian, tensor, lexicographic, and strong products are all product-like, monotone and
obey L-composition. The central result of this section is as stated below. A proof sketch for
this result in presented in Appendix B.

I Theorem 5.3. Let S1, . . . ,Sn,S be classes of structures and let O : S1 × · · · × Sn → S be
a surjective n-ary quantifier-free operation. Then the following are true:
1. For each of the following cases, if L-EBSP(Si) holds (with computable/elementary witness

functions) for each i ∈ {1, . . . , n}, then L-EBSP(S) holds as well (with computable/ele-
mentary witness functions): (i) O is sum-like (ii) O is product-like and L = FO.

2. Suppose Si admits an effective L-good tree representation for each i ∈ {1, . . . , n}, and
O is monotone and obeys L-composition. Then there exists an effective L-good tree
representation Str : T → Z for the class Z = S ∪

⋃i=n
i=1 Si.

3. Let Str be as given by the previous point. Then there is a linear time f.p.t. algorithm for
MC(L,S) that decides, for every L sentence ϕ (the parameter), if a given structure A in
S satisfies ϕ, provided that A is given in the form of a tree representation of it under Str.

A. Sankaran 37:15

I Discussion. Theorems 5.1, 5.2, 5.3 and 4.2 jointly show that the various posets and graph
classes described in this section admit linear time f.p.t. algorithms for MC(L, ·), provided
an L-good tree representation of the input structure is given. For structures coming from
the classes of words, the various kinds of trees, nested words and cographs, we can indeed
even construct, in linear time, the Hasse diagram of an L-good tree representation for the
structure, given its standard presentation (this is easy to see for the first three kinds of
classes; for the case of cographs, see [18]). It turns out that the techniques used in our
f.p.t. algorithms can be easily adapted to work even when the input structures are presented
using the aforementioned diagrams. This then enables getting (unconditional) linear time
f.p.t. algorithms for MC(L, ·) for the cases of words, trees, nested words and cographs, thereby
matching known f.p.t. results for MC(L, ·) concerning these classes [10, 2, 19]. Going further,
to the best of our knowledge, the f.p.t. results for n-partite cographs and those for classes
generated using trees of quantifier-free operations, that are entailed by Theorems 5.2, 5.3
and 4.2, are new. Our proofs can then be seen as giving a different and unified technique to
show existing f.p.t. results, in addition to giving new results. We mention however that if
the dependence on the parameter in our f.p.t. algorithms is also considered, then our results
(which give only computable parameter dependence) are weaker than those in [11] which
show that for classes of bounded tree-depth/SC-depth/shrub-depth, there are linear time
f.p.t. algorithms for L model checking, that have elementary parameter dependence.

6 Logical fractals

We define a strengthening of L-EBSP that asserts “logical self-similarity” at “all scales” for
a suitable notion of scale. Towards the formal definition, call a function f : N+ → N+ a
scale function if it is strictly increasing. The ith scale, denoted 〈i〉f , is defined as the interval
[f(i− 1) + 1, f(i)] = {j | f(i−1)+1 ≤ j ≤ f(i)} for i > 1, and [1, f(1)] = {j | 1 ≤ j ≤ f(1)}.

I Definition 6.1 (Logical fractal). Given a class S of structures, we say S is an L-fractal, if
there exists a function θ(S,L) : N2

+ → N+ such that (i) θ(S,L)(m) is a scale function for all
m ∈ N, and (ii) for each structure A of S and each m ∈ N, if f is the function θ(S,L)(m) and
|A| ∈ 〈i〉f for some i ∈ N, then for all j < i, there exists a substructure B of A in S, such
that |B| ∈ 〈j〉f and B ≡m,L A. We say θ(S,L) is a witness to the L-fractal property of S.

Call a representation map Str : T → S as L-great if (i) it is L-good, and (ii) there is a
strictly increasing function β : N→ N such that for every t, s ∈ T , if |(|t| − |s|)| ≤ n, then
|(|Str(t)| − |Str(s)|)| ≤ β(n). In such a case, we say S admits an L-great tree representation.
We now have the following result. We present a proof sketch in Appendix C.

I Proposition 6.2. If S admits an L-great tree representation, then S is an L-fractal.

One can easily verify that for all the examples of posets and graphs considered in Section 5,
their L-good representation maps as described in this section are indeed L-great too, whereby
all these classes are logical fractals. Further, the logical fractal property is preserved under
all examples of operations on structures seen in Section 5; see Appendix C for a proof sketch.

7 Conclusion

We presented a natural finitary analogue of the well-studied downward Löwenheim-Skolem
property from classical model theory, denoted L-EBSP, and showed that this property is
enjoyed by various classes of interest in computer science, whereby all these classes can

CSL 2017

37:16 A Finitary Analogue of the Downward Löwenheim-Skolem Property

be seen to admit a natural finitary version of the downward Löwenheim-Skolem theorem.
The aforesaid classes admit tree representations for their structures, using which we obtain
linear time f.p.t. algorithms for FO and MSO model checking for these classes (when the
structures in the classes are presented using their tree representations). Finally, the aforesaid
classes possess a fractal like property, one based on logic. These observations open up several
interesting and challenging directions for future work, some of which we mention below.
1. Under what conditions on a class of structures is the index of the ≡m,L relation over

the class an elementary function of m? Investigating this question for classes admitting
elementary L-good tree representations might yield insights for linear time f.p.t. algorithms
for L model checking over these classes, that have elementary parameter dependence.

2. We have adopted the composition method for proving f.p.t. results for the classes we
have considered. However, automata based methods for f.p.t. results have also been
well-studied in the literature [6, 14, 11]. Since all our classes have representations using
trees, a natural question is whether we can give tree automata based proofs for them, and
more generally for Theorem 4.2. Given the existence of pumping lemmas for trees, the
aforementioned proofs would also, intuitively speaking, lend themselves to investigating
the upward Löwenheim-Skolem property for all of our classes.

3. The requirement of a small and logically similar substructure in the L-EBSP definition,
causes some well-studied classes of structures to not satisfy L-EBSP. For instance, the class
of all graphs of tree-width ≤ k does not satisfy L-EBSP for any k. This motivates asking
whether these classes satisfy variants of L-EBSP in which “substructure” is replaced with
other natural relations, and if they do, then whether the witness functions are computable.
As a step in this direction, we show that the variant of L-EBSP in which “substructure” is
replaced with “minor”, is satisfied by the class of all graphs, and every minor-hereditary
subclass of it. Any witness function however, turns out to be non-recursive in general.

4. All our examples of L-EBSP classes (resp. logical fractals) are defined using structural
conditions. This leads us to asking the converse, and hence the following: Is there a
structural characterization of L-EBSP (resp. of logical fractals)? We believe that an
answer to this question, even under reasonable assumptions, would yield new classes that
are well-behaved from both the logical and the algorithmic perspectives.

Acknowledgements. I express my deepest gratitude to Bharat Adsul for various insightful
discussions and critical feedback that have helped in preparing this paper. I also thank the
anonymous referees of the paper, and of an earlier version of it, for their valuable comments.

References
1 Natasha Alechina and Yuri Gurevich. Syntax vs. semantics on finite structures. In Struc-

tures in Logic and Computer Science. A Selection of Essays in Honor of A. Ehrenfeucht,
pages 14–33. Springer-Verlag, 1997.

2 Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to words. J. ACM,
56(3), 2009.

3 Albert Atserias, Anuj Dawar, and Martin Grohe. Preservation under extensions on well-
behaved finite structures. SIAM J. Comput., 38(4):1364–1381, 2008. doi:10.1137/
060658709.

4 Michael Barnsley. Fractals Everywhere. Academic Press Professional, Inc., 1988.
5 Hubert Comon, Max Dauchet, Remi Gilleron, Christof Löding, Florent Jacquemard, Denis

Lugiez, Sophie Tison, and Marc Tommasi. Tree automata techniques and applications,
2007. release October 12, 2007. URL: http://www.grappa.univ-lille3.fr/tata.

http://dx.doi.org/10.1137/060658709
http://dx.doi.org/10.1137/060658709
http://www.grappa.univ-lille3.fr/tata

A. Sankaran 37:17

6 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

7 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

8 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-
order logic coincide. In LICS 2012, Croatia, June 25-28, 2012, pages 265–274, 2012.

9 Solomon Feferman and Robert Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47(1):57–103, 1959.

10 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

11 Jakub Gajarsky and Petr Hlinený. Kernelizing MSO properties of trees of fixed height, and
some consequences. Log. Meth. Comp. Sci., 11(19):1–26, 2015.

12 Robert Ganian, Petr Hlinený, Jaroslav Nešetřil, Jan Obdrzálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In MFCS 2012,
Bratislava, Slovakia, August 27-31, 2012, pages 419–430, 2012.

13 Martin Grohe. Some remarks on finite Löwenheim-Skolem theorems. Math. Log. Q., 42:569–
571, 1996.

14 Martin Grohe. Logic, graphs, and algorithms. Logic and automata, 2:357–422, 2008.
15 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model

Theoretic Methods in Finite Combinatorics, 558:181–206, 2011.
16 Yuri Gurevich. Toward logic tailored for computational complexity. In Michael M. Richter

et al., editor, Computation and Proof Theory: Proceedings of the Logic Colloquium held in
Aachen, July 18-23, 1983, Part II, pages 175–216. Springer-Verlag, 1984.

17 Frederik Harwath, Lucas Heimberg, and Nicole Schweikardt. Preservation and decomposi-
tion theorems for bounded degree structures. Log. Meth. Comp. Sci., 11(4), 2015.

18 Beverly Jamison and Stephan Olariu. Recognizing P4-sparse graphs in linear time. SIAM
Journal on Computing, 21(2):381–406, 1992.

19 Beverly Jamison and Stephan Olariu. Linear time optimization algorithms for P4-sparse
graphs. Discrete Applied Mathematics, 61(2):155–175, 1995.

20 Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.
21 Per Lindström. A characterization of elementary logic. In Sören Halldén, editor, Modality,

Morality and Other Problems of Sense and Nonsense, pages 189–191. Lund,Gleerup, 1973.
22 Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen,

76(4):447–470, 1915.
23 Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.

Logic, 126(1-3):159–213, 2004.
24 Anatoly I. Maltsev. Untersuchungen aus dem Gebiete der mathematischen Logik. Matem-

aticheskii Sbornik, n.s.(1):323–336, 1936.
25 Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-

morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006.
26 Eric Rosen. Some aspects of model theory and finite structures. Bull. Symbolic Logic,

8(3):380–403, 2002.
27 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–15:53,

2008.
28 Abhisekh Sankaran. A generalization of the Łoś-Tarski preservation theorem. CoRR,

abs/1609.06297, 2016. URL: http://arxiv.org/abs/1609.06297.
29 Abhisekh Sankaran. A finitary analogue of the downward Löwenheim-Skolem property.

CoRR, abs/1705.04493, 2017. URL: http://arxiv.org/abs/1705.04493.

CSL 2017

http://arxiv.org/abs/1609.06297
http://arxiv.org/abs/1705.04493

37:18 A Finitary Analogue of the Downward Löwenheim-Skolem Property

30 Abhisekh Sankaran, Bharat Adsul, and Supratik Chakraborty. A generalization of the
Łoś-Tarski preservation theorem over classes of finite structures. In MFCS 2014, Budapest,
Hungary, August 25-29, 2014, Part I, pages 474–485, 2014.

31 Abhisekh Sankaran, Bharat Adsul, and Supratik Chakraborty. A generalization of the
Łoś-Tarski preservation theorem. Ann. Pure Appl. Logic, 167(3):189–210, 2016.

32 J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical systems theory, 2(1):57–81, 1968.

33 Wolfgang Thomas. Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words, pages 118–143. Springer Berlin Heidelberg, 1997.

34 Jouko Väänänen. Pseudo-finite model theory. Mat. Contemp, 24(8th):169–183, 2003.

A Feferman-Vaught style composition lemmas

We present Feferman-Vaught style composition lemmas for various classes of structures.
While these lemmas for ordered and unordered trees, as presented here, is possibly known,
to the best of our knowledge these lemmas for nested words and n-partite cographs (again as
presented here) are new. The proofs of all these lemmas can be found in [29].

A. Ordered trees. To state the composition lemma, we first introduce some terminology.
For a finite alphabet Ω, given ordered Ω-trees t, s having disjoint sets of nodes (w.l.o.g.) and
a non-root node a of t, the join of s to t to the right of a, denoted t ·→a s, is defined as the
tree obtained by making s as a new child subtree of the parent of a in t, at the successor
position of the position of a among the children of the parent of a in t. We can similarly
define the join of s to t to the left of a, denoted t ·←a s. Likewise, for t and s as above, if a is
a leaf node of t, we can define the join of s to t below a, denoted t ·↑a s, as the tree obtained
up to isomorphism by making the root of s as a child of a.

I Lemma A.1 (Composition lemma for ordered trees). For a finite alphabet Ω, let ti, si be
non-empty ordered Ω-trees, and let ai be a non-root node of ti, for i ∈ {1, 2}. Let m ≥ 2 and
suppose that (t1, a1) ≡m,L (t2, a2) and s1 ≡m,L s2. Then each of the following hold.
1. ((t1 ·→a1

s1), a1) ≡m,L ((t2 ·→a2
s2), a2)

2. ((t1 ·←a1
s1), a1) ≡m,L ((t2 ·←a2

s2), a2)
3. ((t1 ·↑a1

s1), a1) ≡m,L ((t2 ·↑a2
s2), a2) if a1, a2 are leaf nodes of t1, t2 resp.

B. Unordered trees. We introduce terminology akin to that introduced for ordered trees
above. Given unordered trees t and s, and a node a of t, define the join of s to t at a, denoted
t ·a s, as follows: Let s′ be an isomorphic copy of s whose set of nodes is disjoint with the set
of nodes of t. Then t ·a s is defined up to isomorphism as the tree obtained by making s′ as a
new child subtree of a in t.

I Lemma A.2 (Composition lemma for unordered trees). For a finite alphabet Ω, let ti, si be
non-empty unordered Ω-trees, and let ai be a node of ti, for i ∈ {1, 2}. For m ∈ N, suppose
that (t1, a1) ≡m,L (t2, a2) and s1 ≡m,L s2. Then ((t1 ·a1 s1), a1) ≡m,L ((t2 ·a2 s2), a2).

C. Nested words. We first define the notion of insert of a nested word v in a nested word
u at a given position e of u.

I Definition A.3 (Insert). Let u = (Au,≤u, λu, u) and v = (Av,≤v, λv, v) be given nested
Σ-words, and let e be a position in u. The insert of v in u at e, denoted u ↑e v, is a nested
Σ-word defined as below.

A. Sankaran 37:19

1. If u and v have disjoint sets of positions, then u ↑e v = (A,≤, λ,) where
A = Au tAv
≤=≤u ∪ ≤v ∪{(i, j) | i ∈ Au, j ∈ Av, i ≤u e} ∪ {(j, i) | i ∈ Au, j ∈ Av, e ≤u i, e 6= i}
λ(a) = λu(a) if a ∈ Au, else λ(a) = λv(a)
 = u ∪ v

2. If u and v have overlapping sets of positions, then let v1 be an isomorphic copy of v whose
set of positions is disjoint with that of u. Then u ↑e v is defined up to isomorphism as
u ↑e v1.

In the special case that e is the last (under ≤u) position of u, we denote u ↑e v as u · v, and
call the latter as the concatenation of v with u.

I Lemma A.4 (Composition lemma for nested words). For a finite alphabet Σ, let ui, vi ∈
Nested-words(Σ), and let ei be a position in ui for i ∈ {1, 2}. Then the following hold for
each m ∈ N.
1. If (u1, e1) ≡m,L (u2, e2) and v1 ≡m,L v2, then (u1 ↑e1 v1) ≡m,L (u2 ↑e2 v2).
2. u1 ≡m,L u2 and v1 ≡m,L v2, then u1 · v1 ≡m,L u2 · v2.

D. n-partite cographs. Let T and Str be as described in the proof idea of Theorem 5.2.
Specifically, T is the class of all (Σint∪Σleaf)-trees whose leaf labels belong to Σleaf and internal
node labels belong to Σint, where Σleaf = [n]×Σ and Σint = {f | f : [n]× [n]→ {0, 1}}. The
representation map Str : T → Labeled-n-partite-cographs(Σ) is exactly of the kind described
for n-partite cographs, that maps a tree in T to the labeled n-partite graph that it represents.

I Lemma A.5 (Composition lemma for n-partite cographs). For i ∈ {1, 2}, let (Gi, νi,1)
and (Hi, νi,2) be graphs in Labeled-n-partite-cographs(Σ). Suppose ti and si are trees of
T such that Str(ti) = (Gi, νi,1), Str(si) = (Hi, νi,2), and the labels of root(ti) and root(si)
are the same. Let zi = ti � si and Str(zi) = (Zi, νi) for i ∈ {1, 2}. For each m ∈ N, if
(G1, ν1,1) ≡m,L (G2, ν2,1) and (H1, ν1,2) ≡m,L (H2, ν2,2), then (Z1, ν1) ≡m,L (Z2, ν2).

B Proof sketch for Theorem 5.3

Recall from Section 2 that a (t, τ, ν,L)-translation scheme Ξ defines a map from τ -structures
to ν-structures, that we denote by Ξ again. For a class S of τ -structures, we let Ξ(S) denote
the class {Ξ(A) | A ∈ S}. Let n-disjoint-sum(S1, . . . ,Sn) = {

⊕i=n
i=1 Ai | Ai ∈ Si, 1 ≤ i ≤ n},

where
⊕i=n

i=1 Ai denotes the n-disjoint sum of A1, . . . ,An. Call a quantifier-free translation
scheme scalar if its dimension is one. We now have the following three results that enable us
to prove Theorem 5.3. The proofs of these results can be found in [29].

I Lemma B.1. Let S be a class of τ -structures and Ξ be a quantifier-free (t, τ, ν,FO)-
translation scheme. Given structures A and B from S, if B ⊆ A, then Ξ(B) ⊆ Ξ(A).

I Lemma B.2. Let S,S1, . . . ,Sn be classes of structures for n ≥ 1. If L-EBSP(Si) is true
for each i ∈ {1, . . . , n}, then so is L-EBSP(n-disjoint-sum(S1, . . . ,Sn)). Further, if there is a
computable/elementary witness function for L-EBSP(Si) for each i ∈ {1, . . . , n}, then there
is a computable/elementary witness function for L-EBSP(n-disjoint-sum(S1, . . . ,Sn)) as well.

I Proposition B.3. Let S be class of τ -structures and Ξ be a quantifier-free (t, τ, ν,FO)-
translation scheme. Then the following are true:
1. If FO-EBSP(S) is true, then so is FO-EBSP(Ξ(S)).
2. If Ξ is scalar and MSO-EBSP(S) is true, then so is MSO-EBSP(Ξ(S)).

CSL 2017

37:20 A Finitary Analogue of the Downward Löwenheim-Skolem Property

In each of the implications above, a computable/elementary witness function for the antecedent
implies a computable/elementary witness function for the consequent.

Proof of Theorem 5.3.
(1) Follows easily from Lemma B.2 and Proposition B.3.
(2) Let Stri : Ti → Si be an effective L-good representation map for 1 ≤ i ≤ n, where Ti is a

class of trees over (Σiint ∪ Σileaf) that is representation feasible for (Σirank, ρi).
Let O be a new label that is not in (Σi

int ∪ Σi
leaf) for any i ∈ {1, . . . , n}. Define

Σint,Σleaf,Σrank and ρ : Σint → N+ as follows:
Σint = {O} ∪

⋃i=n
i=1 Σiint

Σleaf =
⋃i=n
i=1 Σileaf

Σrank = {O} ∪
⋃i=n
i=1 Σirank

ρ = {(O,n)} ∪
⋃i=n
i=1 ρi.

Let T̂ be the class of all trees over (Σint ∪ Σleaf) obtained by taking ti ∈ Ti for 1 ≤ i ≤ n,
and making t1, . . . , tn as child subtrees (and in that order) of a new root node whose label
is O. Let T = T̂ ∪

⋃i=n
i=1 Ti. Verify that T is indeed representation feasible for (Σrank, ρ).

Let Str : T → Z be such that for t ∈ T , if t ∈ Ti, then Str(t) = Stri(t). Else, let a1, . . . , an
be the children of the root of t. Then by the construction of T , we have t≥ai

∈ Ti and
that the label of the root of t is O. Define Str(t) = O(Str1(t≥a1), . . . ,Strn(t≥an)). Using
the fact that O is monotone and obeys L-composition, and using Lemma B.1, it is easy
to verify that Str is indeed an effective L-good representation map.

(3) Since Str is effective and L-good, by Theorem 4.2, there is a linear time f.p.t. algorithm
for MC(L,Z) that decides, for every L sentence ϕ, if a given structure A in Z satisfies ϕ,
provided that A is given in the form of a tree representation of it under Str. Clearly the
same algorithm is also f.p.t. for MC(L,S). J

C Proof sketches for results concerning logical fractals

A. Proof sketch for Proposition 6.2. The following lemma is central to the proof of
Proposition 6.2. The proof of the lemma uses similar ideas as used in proving Theorem 4.2;
The details are presented in [29].

I Lemma C.1. Let S be a class of structures that admits an L-good tree representation
Str : T → S. Then there exists a strictly increasing computable function η : N→ N such that
for each m ∈ N and for each tree t ∈ T of size > η(m), there exists a proper subtree s of t in
T such that (i) Str(s) ↪→ Str(t), (ii) Str(s) ≡m,L Str(t), and (iii) |t| − |s| ≤ η(m).

Proof of Proposition 6.2. Let Str : T → S be an L-great representation. Then Str is L-
good, whereby by Lemma C.1, there exists a function η satisfying the properties mentioned in
the lemma. For m ∈ N, define f(m) = max{|Str(t)| | |t| ≤ η(m)}. Since Str is L-great, there
exists a function β : N→ N satisfying the properties mentioned in the definition of L-greatness.
Then define the function θ(S,L) : N2

+ → N+ as θ(S,L)(m)(n) = f(m) + (n− 1) · β(η(m)). It
is easily seen that θ(S,L)(m) is a scale function. Consider A ∈ S and m ∈ N, and suppose
that |A| ∈ 〈i〉g where g is the function θ(S,L)(m) and i > 1. To show that for j < i, there
exists a substructure B of A in S such that |B| ∈ 〈j〉g and B ≡m,L A, we observe that
it suffices to show the same simply for j = i − 1. Let t ∈ T be such that Str(t) = A. By
Lemma C.1, there exists a subtree s of t in T such that Str(s) ↪→ Str(t), Str(s) ≡m,L Str(t) and
|t| − |s| ≤ η(m). Since Str is L-great, it follows that |Str(t)| − |Str(s)| ≤ β(η(m)). Whereby,
either |Str(s)| ∈ 〈i− 1〉g or |Str(s)| ∈ 〈i〉g. If the former holds, then taking B = Str(s), we
are done. If the latter holds, then applying Lemma C.1 recursively to s, we eventually get

A. Sankaran 37:21

a subtree x of t in T such that Str(x) ↪→ Str(t), Str(x) ≡m,L Str(t) and |Str(x)| ∈ 〈i − 1〉g.
Whereby, taking B = Str(x), we are done. J

B. Proof sketch for closure properties. We finally show that the logical fractal property
remains closed under the examples of operations seen earlier: the unary operations of
complementation, transpose and the line-graph operation, the binary sum-like operations of
disjoint union and join, and the binary product-like operations of Cartesian, tensor, strong
and lexicographic products. The proofs of each of these are along the same lines as the
corresponding proofs that show the closure of L-EBSP under these operations, as given by
Theorem 5.3(1). We give below the witness functions for each of these operations.

For i ∈ {1, 2}, let Si be an L-fractal and let θ(Si,L) be a witness to the L-fractal property
of Si. Let O be one of the operations mentioned above, and let S be the class {O(A) | A ∈ S1}
if O is unary, and the class {O(A,B) | A ∈ S1,B ∈ S2} if O is binary. Then S is an L-fractal
with witness function θ(S,L) given as follows:
1. O is unary:

a. If O is complementation or transpose, then θ(S,L) = θ(S1,L).
b. If O is the line-graph operation and L = FO, then θ(S,L)(m)(n) = (θ(S1,L)(m)(n))2 for

all m,n ∈ N+.
2. O is binary and sum-like: θ(S,L)(m)(n) = θ(S1,L)(m)(1) + θ(S2,L)(m)(n) for all m,n ∈ N+.
3. O is binary and product-like, and L = FO: We define θ(S,L)(m)(n) inductively as follows

for all m,n ∈ N+:
θ(S,L)(m)(1) = θ(S1,L)(m)(1) · θ(S2,L)(m)(1)
Let n > 1. For i ∈ {1, 2}, let ki = min({j | θ(Si,L)(m)(j) ≥ θ(S,L)(m)(n)}). Then
θ(S,L)(m)(n+ 1) = θ(S1,L)(m)(k1 + 1) · θ(S2,L)(m)(k2 + 1).

For unary and sum-like binary operations, it is easy to verify that θ(S,L) indeed witnesses
the L-fractal property of S. For product-like binary operations, here is the explanation. For
m ∈ N+, let f be the function θ(S,L)(m). Consider C ∈ S such that |C| ∈ 〈i〉f . We assume
i > 2; the i = 2 case can be done similarly. Then C = O(A,B) for A ∈ S1 and B ∈ S2. By
construction of θ(S,L), we have |C| = |A|·|B| ≥ f(i−1) = θ(S1,L)(m)(k1+1) · θ(S2,L)(m)(k2+1),
where ki = min({j | θ(Si,L)(m)(j) ≥ f(i− 2)}) for i ∈ {1, 2}. We have two cases here:

1. |A| ≥ θ(S1,L)(m)(k1 + 1) and |B| ≥ θ(S2,L)(m)(k2 + 1): Then since Si is an L-fractal with
witness θ(Si,L) for i ∈ {1, 2}, there exists a substructure A′ of A in S1, resp. substructure
B′ of B in S2 such that A′ ≡m,L A and θ(S1,L)(m)(k1) < |A′| ≤ θ(S1,L)(m)(k1 + 1),
resp. B′ ≡m,L B and θ(S2,L)(m)(k2) < |B′| ≤ θ(S2,L)(m)(k2 + 1). Let C′ = O(A′,B′).

2. Assume w.l.o.g. that |A| ≥ θ(S1,L)(m)(k1 + 1) and |B| < θ(S2,L)(m)(k2 + 1). Then
consider the structure A′ as described above, and let C′ = O(A′,B).

In either case, we observe that C′ is a substructure of C in S such that C′ ≡m,L C and
|C′| ∈ 〈i− 1〉f . Whereby, S is an L-fractal, and θ(S,L) witnesses the L-fractal property of S.

CSL 2017

	Introduction
	Terminology and preliminaries
	The L-Equivalent Bounded Substructure Property
	Partially ranked trees satisfy L-EBSP

	Lifting to tree representations
	Applications to various concrete settings
	Logical fractals
	Conclusion
	Feferman-Vaught style composition lemmas
	Proof sketch for Theorem 5.3
	Proof sketches for results concerning logical fractals

