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Abstract. We present a logic-based combinatorial property of classes
of finite structures that allows an effective generalization of the �Loś-
Tarski preservation theorem to hold over classes satisfying the property.
The well-studied classes of words and trees, and structures of bounded
tree-depth are shown to satisfy the property. We also show that starting
with classes satisfying this property, the classes generated by applying
composition operations like disjoint union, cartesian and tensor products,
inherit the property. We finally show that all classes of structures that
are well-quasi-ordered under the embedding relation satisfy a natural
generalization of our property.

1 Introduction

Preservation theorems in first-order logic (henceforth called FO) have been ex-
tensively studied in classical model theory [3]. An FO preservation theorem as-
serts that the collection of FO definable classes closed under a model-theoretic
operation corresponds to the collection of classes definable by a syntactic frag-
ment of FO. A classical preservation theorem is the �Loś-Tarski theorem, which
states that over the class of all structures, the class defined by an FO sentence is
preserved under substructures if, and only if, the sentence is equivalent to a uni-
versal sentence [3]. It was conjectured in [11], and subsequently proved in [10],
that this theorem can be generalized using a simple yet delicate semantic notion
of preservation under substructures modulo k-sized “cruxes” (in [11,10], ‘cruxes’
are called ‘cores’). This notion reduces to the usual notion of preservation un-
der substructures when k equals 0. The generalized �Loś-Tarski theorem, proved
in [10], states that over the class of all structures and for all natural numbers k,
the class defined by an FO sentence is preserved under substructures modulo k-
sized cruxes if, and only if, the sentence is equivalent to an ∃k∀∗ sentence (i.e.,
a prenex sentence having quantifier prefix of the form ∃k∀∗). Since finite struc-
tures are important from a computational perspective, it is interesting to study
preservation theorems over classes of finite structures. Unfortunately, most preser-
vation theorems, including the �Loś-Tarski theorem, fail over the class of all finite
structures. Earlier work [1,5,6,2] has therefore studied preservation theorems over
special classes of finite structures. In this paper, we undertake a similar study for
the generalized �Loś-Tarski theorem. Specfically, we identify a logic-based combi-
natorial property that allows the generalized �Loś-Tarski theorem to hold over any
class of finite structures satisfying the property. We show that several well-studied
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classes satisfy this property. Furthermore, the property permits an effective trans-
lation of an FO sentence defining a class that is preserved under substructures
modulo k-sized cruxes, to an equivalent ∃k∀∗ sentence.

In [1], Atserias, Dawar and Grohe considered classes of finite structures that are
acyclic, of bounded degree (more generally, “wide”) or of bounded tree-width. They
showed that under suitable closure assumptions, each of these classes admits the
�Loś-Tarski theorem. Subsequently, Harwath, Heimberg and Schweikardt [6] stud-
ied the bounds for an effective version of the �Loś-Tarski theorem over bounded de-
gree structures. In [5], Duris showed that the �Loś-Tarski theorem holds for struc-
tures that are acyclic in a more general sense. Unfortunately, as discussed in Sec-
tion 2, none of the above classes, in general, admits the generalized �Loś-Tarski the-
orem. This motivates us to ask: Can we identify properties that allow an effective
version of the generalized �Loś-Tarski theorem to hold, and are also satisfied by inter-
esting classes of finite structures? This paper answers this question affirmatively.
Interestingly, the classes of structures studied here are incomparable to those stud-
ied in [1,6,5].

The primary results of this paper can be summarized as follows.

1. In Section 3, we present a parameterized logic-based combinatorial property
of classes of finite structures, and show that this property entails an effective
version of the generalized �Loś-Tarski theorem. Intuitively, if a class S satisfies
this property for parameter k, denoted Plogic(S, k), then for every natural
number m, given any structure in S and k elements of it, there always exists
an m-equivalent bounded substructure, containing these elements, that is in
S. Further, the bound is a computable function of m.

2. In Sections 4 and 5, we respectively show that the following interesting classes
of structures satisfy Plogic(·, k) for all k: (i) the classes of all words and trees
over a finite alphabet, and (ii) any substructure-closed class of relational
structures whose Gaifman graphs have bounded tree-depth.

3. In Section 6, we show that for all k, the property Plogic(·, k) is preserved un-
der natural composition operators on structures, like disjoint union, cartesian
and tensor products. This allows us to construct additional classes of struc-
tures that satisfy the generalized �Loś-Tarski theorem, from known classes.
Interesting examples of such constructed classes are grids of bounded di-
mension and various classes of co-graphs like all co-graphs, complete graphs,
complete n-partite graphs for each n, threshold graphs etc. It is important
to note that the classes considered in Sections 4, 5 and 6 lie beyond those
studied in [1,6,5], and yet satisfy the �Loś-Tarski theorem.

4. In Section 7, we briefly discuss two other parameterized properties, de-
noted Pwqo(·, k) and Pgen

logic(·, k), each of which entails the generalized �Loś-
Tarski theorem “(not necessarily an effective version though)”. The property
Pwqo(·, k) is based on well-quasi-ordering of the embedding relation on struc-
tures, while Pgen

logic(·, k) is a generalization of Plogic(·, k). An interesting result

is that Pwqo(·, k) is subsumed by Pgen
logic(·, k), yielding a logic-based tool to

show that certain classes are not well-quasi-ordered under the embedding
relation.
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To prove the above results, we use a combination of techniques. For example,
to show that trees and words satisfy Plogic(·, k), we present a composition lemma
for trees in Section 4, and use it to show that certain “prunings” of trees preserve
m-equivalence. In Section 5, to prove that the class of structures with Gaifman
graphs of tree-depth at most n satisfies Plogic(·, k), we introduce the notion of a
twin of a structure with respect to a given element and use inductive reasoning
over n. In Section 6, the proof of closure of Plogic(·, k) under natural composition
operators uses a tree representation of structures generated by applying the
operators, and uses results for trees proved earlier in Section 4. For lack of
space, we defer the full proofs of our results to the journal version of the paper.

2 Notation and Preliminaries

Let N denote the natural numbers including zero. We assume that the reader is
familiar with standard notation and terminology of first-order logic. We consider
only finite vocabularies, represented by τ , that contain only predicate symbols of
positive arity (and no constants or functions), unless explicitly stated otherwise.
We denote by FO(τ) the set of all FO formulae over τ . A sequence (x1, . . . , xk)
of variables is written as x̄. We abbreviate a block of quantifiers Qx1 . . . Qxk by
Qkx̄, where Q ∈ {∀, ∃}. Given k, p ∈ N, let ∃k∀p denote the set of all FO(τ) sen-
tences in prenex normal form whose quantifier prefix has k existential quantifiers
followed by p universal quantifiers. We use ∃k∀∗ to denote

⋃
p∈N

∃k∀p.
Standard notions of τ -structures, substructures and extensions (see [3]) are

used throughout. As in [3], by substructures, we mean induced substructures.
Given a τ -structure A, we use UA to denote the universe of A and |A| to denote
its cardinality. Given τ -structures A and B, we use A ⊆ B to denote that A is
a substructure of B. Given a τ -structure A and an FO(τ) sentence ϕ, if A |= ϕ,
we say that A is a model of ϕ. We focus only on recursive (or decidable) classes
of finite τ -structures in this paper. All classes of τ -structures, and subclasses
thereof, are also assumed to be closed under isomorphisms.

The following notion is central to our work.

Definition 1. Let S be a class of τ-structures and k ∈ N. A subclass C of S is
said to be preserved under substructures modulo k-sized cruxes over S if every
τ-structure A ∈ C has a subset Crux of UA such that (i) |Crux| ≤ k, and (ii) for
every B ∈ S, if B ⊆ A and Crux ⊆ UB, then B ∈ C. The set Crux is called a
k-crux of A with respect to C over S.

As an example, if S is the class of all graphs, then the subclass C of S comprising
graphs containing a k-length cycle as a subgraph is preserved under substruc-
tures modulo k-sized cruxes over S. Like Definition 1, most other definitions,
discussions and results in this paper are stated with respect to an underlying
class S of structures. When S is clear from the context, we omit the mention of
S. Note that Definition 1 is an adapted version of Definition 2 of [11]; the notion
of ‘core’ in the latter is exactly the notion of ‘crux’ in the former when the un-
derlying class S is the class of all structures. We avoid using the word ‘core’ for
a crux to prevent confusion with existing notions of cores in the literature [2].
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Given a class S of structures, let PSC(k) denote the collection of the sub-
classes of S that are preserved under substructures modulo k-sized cruxes over
S, and that are definable over S by FO sentences. We interchangeably talk
of PSC(k) as a collection of classes and as a set of the defining FO sentences.
Similarly, we interchangeably use ∃k∀p (and ∃k∀∗) to denote a set of FO sentences
and the corresponding subclasses of S defined by these sentences. The generalized
�Loś-Tarski theorem, proved in [10], can now be stated as follows.

Theorem 1. Over the class of all structures, for all k ∈ N, PSC(k) = ∃k∀∗.

Note that the notion of cruxes, central to Theorem 1, differs from that of ex-
istential witnesses. If ϕ is an ∃k∀∗ sentence and A |= ϕ, then every witness of
the existential variables of ϕ forms a k-crux of A. The converse, however, need
not be true [11]. Specifically, let τ = {E}, where E is a binary predicate. Con-
sider the FO(τ) sentence ϕ ≡ ∃x∀y E(x, y), and the τ -structure A defined by
UA = {0, 1} and EA = {(0, 0), (0, 1), (1, 1)}. Clearly, A |= ϕ and A has only one
witness for variable x of ϕ, viz. 0. Yet, both {0} and {1} are 1-cruxes of A!

Significantly, Theorem 1 fails, in general, over the classes studied in [1,6,5].
To see why this is so, let S be the class of graphs that are disjoint unions of
undirected paths. Observe that S is closed under substructures and disjoint
unions, is acyclic and has degree bounded by 2. Consider the subclass C of S
comprising graphs containing at least 2 connected components. The subclass C is
definable over S by an FO sentence ψ asserting that any model either has at least
3 end points or has at least 2 isolated vertices. Further, for any graph G in C, any
two vertices belonging to distinct components of G form a 2-crux of G; hence
C is in PSC(2). However, as shown in [11], there exists no ∃2∀∗ sentence that
defines C over S. Likewise, one can show that the class of all directed graphs
of tree-width 1 fails to satisfy PSC(2) = ∃2∀∗. This motivates our quest for
alternative properties of classes of finite structures over which Theorem 1 holds.

3 A Logic Based Combinatorial Property

We begin by recalling from standard FO terminology [7] that if m is a natural
number, two τ -structures A and B are said to be m-equivalent, denoted A ≡m B,
iff A and B agree on the truth of every FO(τ) sentence of quantifier rank at
most m. We can now define a parameterized logic-based combinatorial property
of classes of finite structures as follows.

Definition 2. Let k be a natural number and S be a class of finite structures.
We say that Plogic(S, k) holds if there exists a computable function θk : N → N

such that for each m ∈ N, for each structure A of S and for each subset W of
UA of size at most k, there exists B ⊆ A such that (i) B ∈ S, (ii) W ⊆ UB, (iii)
|B| ≤ θk(m), and (iv) B ≡m A. We call θk a witness function of Plogic(S, k).

Remark: If Plogic(S, k) holds and if S ′ is a subclass of S that is closed under
substructures over S, then it is easy to see that Plogic(S ′, k) also holds.

We list below two simple examples of classes satisfying Plogic(·, k) for every
k ∈ N. Various non-trivial examples are presented in Sections 4, 5 and 6.
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1. Let S be a finite class of finite structures. Clearly, Plogic(S, k) holds for all
k ∈ N, with θk(m) giving the size of the largest structure in S.

2. Let S be the class of all finite linear orders. Then Plogic(S, k) holds for all
k ∈ N, with θk(m) = max(2m, k).

The next theorem is one of the main results of this paper. Before stating the
theorem, we make two observations. First, given a recursive class S of finite
structures and a natural number n, the subclass of all structures in S of size
at most n is definable by an effectively computable FO sentence in ∃n∀∗. We
call this sentence ξS,n. Second, given a sentence ψ of FO(τ) and any sequence
x̄ of variables, one can effectively compute a quantifier-free FO(τ) formula with
free variables x̄ such that this formula evaluates to true in a τ -structure A with
x̄ interpreted as ā iff ψ holds in the substructure of A induced by ā. Following
notation in [11], we denote this formula as ψ|x̄, read as ψ relativized to x̄.

Theorem 2. Let S be a recursive class of finite structures and k ∈ N be such
that Plogic(S, k) holds. Then PSC(k) = ∃k∀∗ over S, and the translation from
PSC(k) to ∃k∀∗ is effective. Specifically, if a witness function for Plogic(S, k) is
θk, then an FO sentence χ of quantifier rank m in PSC(k) is equivalent (over
S) to the sentence ∃kx̄∀pȳ ψ|x̄ȳ, where p = θk(m) and ψ ≡ (ξS,p → χ).

Proof: It is obvious that ∃k∀∗ ⊆ PSC(k) over S. Towards the converse, consider
a sentence χ, of quantifier rank m, in PSC(k) over S. Consider the sentence
ϕ ≡ ∃kx̄∀pȳ ψ|x̄ȳ, where p and ψ are as stated above. Since χ is in PSC(k) over
S, every model A of χ in S also satisfies ϕ. This is because the elements of any
k-crux of A can serve as witnesses of the existential quantifiers in ϕ. To show
ϕ → χ over S, suppose A is a model of ϕ in S. Let W be a set of witnesses in
A for the k existential variables in ϕ. Clearly, |W | ≤ k. Since Plogic(S, k) holds,
there exists B ⊆ A such that (i) B ∈ S, (ii) W ⊆ UB, (iii) |B| ≤ θk(m) = p, and
(iii) B ≡m A. Since A |= ϕ, by instantiating the universal variables in ϕ with
the elements of UB, we have B |= χ. Since the quantifier rank of χ is m and
B ≡m A, it follows that A |= χ. Therefore, χ is equivalent to ϕ over S. Finally,
since m is effectively computable from χ, so are p, ξS,p and ϕ.

4 Words and Trees over a Finite Alphabet

Given an alphabet Σ, let Words(Σ) and Trees(Σ) denote the set of all finite
words and trees, respectively, over Σ. The key result of this section is as follows.

Theorem 3. For every finite alphabet Σ, both Plogic(Words(Σ), k) and
Plogic(Trees(Σ), k) hold for every natural number k.

For purposes of our discussion, we use a poset-theoretic representation of trees. A
tree is a finite poset P = (A,≤) with a unique minimal element (called “root”),
and for every a, b, c ∈ A,

(
(a ≤ c) ∧ (b ≤ c)

) → (
a ≤ b ∨ b ≤ a

)
. Informally,

the Hasse diagram of P is an (inverted) tree with every parent p connected to
its child c. A tree over Σ, henceforth called a Σ-tree, is a pair (P, λ) where
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P = (A,≤) is a tree and λ : A → Σ is a labeling function. The elements of A
are also called nodes (or elements) of the Σ-tree. In the special case where the
underlying poset is a linear order, a Σ-tree is called a Σ-word. We denote trees
by either s or t. A Σ-forest f is a (finite) disjoint union of Σ-trees.

Let τ be the vocabulary {≤} ∪ {Qa | a ∈ Σ}, where ≤ is a binary predicate
and each Qa is a unary predicate. A Σ-tree s = ((As,≤s), λs) has a natural
representation as a structure As over τ . To represent a Σ-forest f as a τ -structure
Af, we use the disjoint union (denoted �) of the τ -structures representing the
Σ-trees in f. For clarity of exposition, we use s (resp. f) to denote both a Σ-tree
s (resp. Σ-forest f) and its corresponding τ -structure As (resp. Af).

We use the standard notions of height, degree and subtree of a given tree.
Given two Σ-trees s = ((As,≤s), λs) and t = ((At,≤t), λt) with disjoint sets of
nodes, and an element e of s, the join of t to s at e, denoted s ·e t, is the Σ-tree
obtained from s by adding t as a new “child subtree” of the element e of s. Given
a Σ-tree s, a Σ-forest f =

⊔n
i=1 ti and an element e of s, the join of f to s at e,

denoted s ·e f, is the Σ-tree ((((s ·e t1) ·e t2) · · · ) ·e tn).
The proof of Theorem 3 uses two key auxiliary lemmas. The first is a com-

position lemma for trees. This lemma intuitively states that if t is a tree, a is a
node of t, and f is a forest, then the ≡m class of t ·a f is completely determined by
the ≡m classes of (t, a) and f. Composition results of this kind were first studied
by Feferman and Vaught, and subsequently by others (see [8] for a survey).

Lemma 1. Let ti be a non-empty Σ-tree containing element ai, and fi be a
non-empty Σ-forest containing element bi, for i ∈ {1, 2}. Let si = ti ·ai fi for
i ∈ {1, 2}. Suppose (t1, a1) ≡m (t2, a2). Then the following hold.

1. If (f1, b1) ≡m (f2, b2), then (s1, a1, b1) ≡m (s2, a2, b2).
2. If f1 ≡m f2, then (s1, a1) ≡m (s2, a2).

The proof of Lemma 1 uses the Ehrenfeucht-Fräıssé theorem [7] and is similar to
the proof of the composition lemma for words. Before stating the next auxiliary
lemma, we introduce some notation. Given an alphabet Σ and a natural number
m, let Δ(m,Σ) denote the set of all equivalence classes of the ≡m relation over
Trees(Σ). Let Alph denote the set of all finite alphabets, and g : N× Alph → N

be a computable function such that g(m,Σ) ≥ |Δ(m,Σ)|. It is known that g
exists (see proof of Lemma 3.13 in [7]). We now state our next auxiliary lemma.

Lemma 2. Let s be a Σ-tree. For every m ∈ N, each of the following exist.

(a) A subtree t1 of s such that t1 has degree ≤ m · g(m,Σ) and t1 ≡m s.
(b) A subtree t2 of s such that t2 has height ≤ g(m,Σ) and t2 ≡m s.

Proof Sketch: (a) Let d denote m · g(m,Σ). If each node of s has at most d
children, then taking t1 to be s, we are done. Else, let a be a node of s, having
> d children. Let Γ (a) denote the set of all subtrees of s rooted at the children
of a in s, and let f be the forest whose trees are exactly the members of Γ (a).
Let t be the tree such that s = t ·a f. For every δ ∈ Δ(m,Σ), let Γ (a, δ) be the set
consisting of the members of Γ (a) whose ≡m class is δ. Construct the forest f1



480 A. Sankaran, B. Adsul, and S. Chakraborty

by performing the following operation on f for each δ ∈ Δ(m,Σ): retain Γ (a, δ)
entirely in f if |Γ (a, δ)| < m, else retain exactly (any) m members of Γ (a, δ) in
f and remove the rest. It is easy to see that f ≡m f1. Let s1 = t ·a f1. Then using
Lemma 1, we get that s1 ≡m s. Observe that s1 has strictly fewer nodes that
have > d children, compared to s. Recursing on s1, we are eventually done.

(b) Let A be the underlying set of s. Define the function h : A→Δ(m,Σ) such
that h(a) is the ≡m class of the subtree of s rooted at a, for every a ∈ A. If for
each path in s, no two distinct elements on the path have the same h value, then
the height of s is at most g(m,Σ). Then the desired subtree t2 can be chosen to
be s itself. Otherwise, there exist distinct a, b ∈ A such that (i) s |= (a ≤ b) and
(ii) h(a) = h(b). Let s1 be the subtree of s obtained by ‘replacing’ the subtree
rooted at a with the subtree rooted at b. By Lemma 1, we get s1 ≡m s. Also, s1
has strictly fewer nodes than s. Recursing on s1, we are eventually done.

The proof of Theorem 3 for Trees(Σ) is now completed as follows. Given
m ∈ N, a Σ-tree s = (P, λ) and a set W of at most k elements of s, let s′ = (P, λ′)
be the tree over Σ′ = Σ × {0, 1} such that for every a ∈ P , λ′(a) = (λ(a), 1)
if a ∈ W , and λ′(a) = (λ(a), 0) otherwise. Let n = max(m, k). By Lemma 2,
there exists a subtree t′ of s′ with degree at most n · g(n,Σ′) and height at most
g(n,Σ′), that is n-equivalent to s′. It is easy to check that by dropping the second
component of the labels of all elements of t′, we get a subtree t of s containing W .
In addition, t ≡m s and |t| ≤ θk(m), where θk(m) = (n·g(n,Σ′)+1)g(n,Σ

′)+1 and
n = max(m, k). Then Plogic(Trees(Σ), k) holds with θk as the witness function.
Whence, Plogic(Words(Σ), k) holds by the remark following Definition 2.

5 Structures of Bounded Tree-Depth

Nešetřil and de Mendez introduced the notion of tree-depth of an undirected
graph in [9]. Intuitively, the tree-depth of a graph G, denoted td(G), is a measure
of how far G is from being a star. The following is an inductive definition of tree-
depth, given by Lemma 2.2 of [9]. In this definition, G = (V,E) denotes a graph,
Comp(G) denote the set of all connected components of G, and G \ v denotes
the graph obtained by removing the vertex v from G.

td(G) =

⎧
⎪⎨

⎪⎩

1 if Ghas a single vertex

1 + min v∈V td(G \ v) if G is connected and has multiple vertices

maxG′∈Comp(G) td(G′) if G is disconnected

The Gaifman graph G(A) of a relational structure A is an undirected graph
whose nodes are the elements of A, and in which two nodes are adjacent if, and
only if, they appear together in some tuple of some relation of A [7]. We say that
a structure A is connected if G(A) is connected, else we say A is disconnected.
A substructure B of A is said to be a connected component of A if G(B) is
a connected component of G(A). We say that A has tree-depth n if G(A) has
tree-depth n. We say that a class S of structures has bounded tree-depth if there
exists a natural number n such that all structures in S have tree-depth at most
n. The main result of this section can now be stated as follows.



A Generalization of the �Loś-Tarski Preservation Theorem 481

Theorem 4. Let S be a substructure-closed class of finite structures, of bounded
tree-depth. Then Plogic(S, k) holds for every natural number k.

In this section, we allow the vocabulary τ to contain 0-ary predicate symbols. To
prove Theorem 4, we introduce the notion of twin-structures. Given a vocabulary
τ and a predicate R in τ , let #R denote the arity of R. If #R > 0, then for each
subset T of {1, . . .#R}, letRT denote a predicate of arity #R−|T |. Define τ̂ to be
the vocabulary {R | R ∈ τ,#R = 0} ∪ {RT | R ∈ τ,#R > 0, T ⊆ {1, . . . ,#R}}.
Given a τ -structure A and an element a of it, let A\a denote the substructure of
A induced by UA \ {a}. Given a predicate R in τ , a subset T of {1, . . . ,#R} and
a (#R − |T |)-tuple b̄ from A \ a, let exa(b̄, T ) denote the expansion of b̄ with a
at the positions in T . Formally, exa(b̄, T ) is the #R-tuple whose ith component
is a for each i ∈ T , and whose sub-tuple obtained by dropping all the a’s, is
exactly b̄. Then the twin-structure of A with respect to a, denoted twin(A, a),
is a τ̂ -structure defined as: (i) The universe of twin(A, a) is UA \ {a} (ii) For
every 0-ary predicate R in τ , we have twin(A, a) |= R iff A |= R (iii) For every
predicate RT in τ̂ and for every (#R − |T |)-tuple b̄ of elements of twin(A, a),
we have twin(A, a) |= RT (b̄) iff A |= R(exa(b̄, T )). Observe that A and twin(A, a)
uniquely identify each other, upto isomorphism. The following lemma is easy.

Lemma 3. Let A and B be given structures and let a and b be elements of A and
B respectively. Then given m ∈ N, if twin(A, a) ≡m twin(B, b), then A ≡m B.

Let Δ(m, τ) be the set of equivalence classes of the ≡m relation over the class
of all τ -structures. Let Vocab be the set of all finite vocabularies. Consider a
computable function g1 : N × Vocab → N such that g1(m, τ) ≥ |Δ(m, τ)|. It
is known that g1 exists (see proof of Lemma 3.13 in [7]). Define the function
f1 : N×N×Vocab → N as f1(n,m, τ) = 1 +m · g1(m, τ̂ ) · f1(n− 1,m, τ̂), where
f1(1,m, τ) = 1. We now have the following lemma.

Lemma 4. Given m ∈ N and a τ-structure A that is connected and has tree-
depth n, there exists B ⊆ A such that (i) B ≡m A and (ii) |B| ≤ f1(n,m, τ).

Proof Sketch: The proof is by induction on n. The base case is trivial. Assume
that the result holds for all tree-depths from 1 to n− 1 and for all vocabularies
τ . Let A be as given. Since A has tree-depth n, by definition, there exists a ∈ A
such that G(A)\a has tree-depth at most n−1. Consider twin(A, a). It is easy to

show that for any τ̂ -structure D̂, if D̂ ⊆ twin(A, a), then D̂ = twin(C, a) for some
C ⊆ A, containing a. Then by a “degree reduction” argument similar to the one
in the proof of Lemma 2(a), there exists A′ ⊆ A, containing a such that (i) each
connected component of twin(A′, a) is a connected component of twin(A, a) (ii)
the set Y of the connected components of twin(A′, a) has size ≤ m · g1(m, τ̂),
and (iii) twin(A′, a) ≡m twin(A, a). From Lemma 3, it follows that A′ ≡m A.

Now for D̂ ∈ Y , let C ⊆ A′ be such that C contains a and D̂ = twin(C, a).
Observing that G(C) \ a and G(twin(C, a)) are the same graph, it follows that

the tree-depth of D̂ is at most n− 1. Applying the induction hypothesis on D̂,
there exists D̂1 ⊆ D̂ such that (i) D̂1 ≡m D̂ and (ii) |D̂1| ≤ f1(n − 1,m, τ̂).
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If D̂2 =
⊔

̂D∈Y D̂1, then D̂2 ≡m twin(A′, a). Since D̂2 ⊆ twin(A′, a), there

exists A′′ ⊆ A′ containing a such that D̂2 = twin(A′′, a). Invoking Lemma 3
on twin(A′′, a) and twin(A′, a), it follows that A′′ ≡m A′. Then A′′ ⊆ A and
A′′ ≡m A. It is easy to see that |A′′| ≤ f1(n,m, τ). Taking B as A′′, the proof is
completed.

Proof of Theorem 4 : Let S be a substructure-closed class of τ -structures of
tree-depth at most n. For notational convenience, let f2(n,m, τ) denote m ·
g1(m, τ) · f1(n,m, τ), for all m,n ∈ N and τ ∈ Vocab. We show below that
Plogic(S, k) holds for each k ∈ N, with the witness function given by θk(m) =
f2(n,m, τ) if k = 0, and by θk(m) = f2(n, r, ν) otherwise, where r = max(m, k)
and ν = τ ∪ {P} for a unary predicate P not in τ . The result for k = 0 follows
from Lemma 4 and from the fact that upto m-equivalence, any τ -structure has
at most m · g1(m, τ) connected components. Suppose we are given A ∈ S and a
subset W of at most k elements of A, for k > 0. Then consider the ν-structure A′

whose τ -reduct is A and in which P is interpreted to be exactly W . By the result
for k = 0, there exists B′ ⊆ A′ such that (i) A′ ≡r B

′ and (ii) |B′| ≤ f2(n, r, ν).
It is clear that the τ -reduct of B′, say B, is such that (i) B ⊆ A (hence B ∈ S)
(ii) W ⊆ UB (iii) A ≡m B and (iv) |B| ≤ f2(n, r, ν) = θk(m). Finally, since
g1(·, ·), f1(·, ·, ·) and f2(·, ·, ·) are easily seen to be computable, we are done.

Remark: The classes of bounded tree-depth considered in this section were
not studied earlier in [1]. While these classes in general are not acyclic, nor of
bounded degree (more generally, not wide too), they are certainly of bounded
tree-width [9]. However, [1] talks only about the class of all structures of tree-
width n for each n ∈ N, and not about any subclasses of it.

6 Generating New Classes of Structures

We consider some natural ways of generating new classes of structures from
a base class S of structures. The primary result of this section is that classes
generated by these techniques inherit the Plogic(·, k) property of the base class.

We focus on disjoint union (�), complement (!), cartesian product (×) and
tensor product (⊗) of τ -structures coming from a base class S. The definition of
� is standard. The definitions of !, × and ⊗ below are inspired by their definitions
for graphs. Let A and B be τ -structures. The complement of A, denoted !A, is
the τ -structure such that (i) U!A = UA, and (ii) for every n-ary predicate R in
τ , for every n-tuple (a1, . . . an) ∈ Un

A, !A |= R(a1, . . . an) iff A �|= R(a1, . . . an).
The cartesian product of A and B, denoted A × B, is the structure C defined
as follows: (i) UC = UA × UB, and (ii) for each n-ary predicate R in τ , for each
n-tuple

(
(a1, b1), . . . , (an, bn)

)
of UC, we have C |= R

(
(a1, b1), . . . , (an, bn)

)
iff(

(a1 = · · · = an ∧ B |= R(b1, . . . , bn))
∨

(A |= R(a1, . . . , an) ∧ b1 = · · · = bn)
)
.

The tensor product of A and B, denoted A⊗B, is defined similar to the cartesian
product, except that A⊗B |= R

(
(a1, b1), . . . , (an, bn)

)
iff A |= R(a1, . . . , an) and

B |= R(b1, . . . , bn).
Let Op be the set {�, !,×,⊗}. The following properties of operations in Op

are important for our purposes. Let � be a binary operation in Op and m ∈ N.
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P1) If A1 ⊆ B1 and A2 ⊆ B2, then (i) !A1 ⊆ !B1 and (ii) (A1�A2) ⊆ (B1�B2).
P2) If A1 ≡m B1 and A2 ≡m B2, then (i) !A1 ≡m!B1 and (ii) (A1 � A2) ≡m

(B1 �B2).

Given a class S, let !S denote the class {!A | A ∈ S}. Given classes S1 and
S2 and a binary operation � ∈ Op, let S1 � S2 denote the class {A �B | A ∈
S1,B ∈ S2}. We now have the following important lemma.

Lemma 5. Let S1,S2 be classes of structures. Let � be a binary operation in
Op and k ∈ N. If Plogic(Si, k) holds for i ∈ {1, 2}, then each of Plogic(!S1, k),
Plogic(!S2, k) and Plogic(S1 � S2, k) holds. In addition, Plogic(S1 ∪ S2, k) holds.

Given a class S of structures satisfying Plogic(·, k), it follows that any class S ′

of structures obtained by finitely many applications of the operations in Op and
by taking finite unions of the classes obtained thereof, also satisfies Plogic(·, k).
However, there are interesting classes that can be generated only by allowing
infinite unions of these derived classes. For example, the class of all co-graphs
is generated from the class of single vertex graphs by finitely many applications
of � and !, and then taking the infinite union of all the classes of graphs thus
obtained. The rest of this section is motivated by such infinite unions.

Given a class S of structures and O ⊆ Op, an expression tree over (S, O) is
a tree over O whose leaf nodes are labelled with specific structures from S and
internal nodes are labelled with operations from O (i.e. elements of O). 1 If s is
an expression tree over (S, O), let Cs denote the structure naturally represented
by s upto isomorphism. We denote by ZS,O the class of all structures defined by
all possible expression trees over (S, O).

Theorem 5. Let S be a given class of structures and let O = {�, !}. For each
k ∈ N, if Plogic(S, k) holds, then so does Plogic(ZS,O, k).

Proof Sketch: Consider A ∈ ZS,O and m ∈ N. Let W ⊆ UA be a set of size at
most k. Let s be an expression tree of A, i.e. Cs = A. The proof is in two parts:

(I) We first construct a bounded sized sub-expression-tree t of s such that (i)
W is contained in the leaves of t, (ii) Ct ⊆ A and (ii) Ct ≡m A. To do this,
we label each node a of s by the pair (δ, i), where δ is the ≡m class of Csa ,
sa is the subtree of s rooted at a, and i is the number of leaves of sa that
contain any element of W . We then do a “height reduction” as in the proof
of Lemma 2(b) to get t.

(II) We create a tree t1 from t by replacing the leaves of t with m-equivalent
bounded substructures ensuring that Ct1 contains W (using the Plogic(S, k)
assumption). By a hierarchical compositional reasoning (using properties P1
and P2), we show that Ct1 is the ‘right’ substructure of Cs.

We list below examples of classes of structures satisfying Plogic(·, k) that can be
generated by applying the above results to simple classes of structures. In all
these examples, we assume a finite set of colours.

1 We think of a tree in the poset-theoretic sense, as in Section 4. The number of
children of any internal node is equal to the arity of the operation labeling the node.
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1. The class of all coloured co-graphs, obtained using expression trees with �
and ! as operations at the internal nodes and coloured isolated nodes as
leaves. By the remark following Definition 2, any class of coloured co-graphs
closed under induced subgraphs is also an example. Special cases include the
classes of coloured complete graphs, coloured complete n-partite graphs for
any n ∈ N and coloured threshold graphs [4].

2. The class of r-dimensional grid posets for every r ∈ N, where an r-dimensional
grid poset is a tensor product of r linear orders.

Using ideas similar to those in the proof of Theorem 5, it can be shown that
for k = 0 or 1, if Plogic(S, k) holds, then so does Plogic(ZS,Op, k), where Op is
as defined earlier. An interesting corollary of this result is that the class of all
finite dimensional grid posets satisfies Plogic(·, k) when k = 0 or 1.

7 Related Properties: Pwqo(S, k) and Pgen
logic(S, k)

In this section, we investigate some other natural properties which are also suffi-
cient to guarantee a generalization of the �Loś-Tarski theorem. Towards this, we
first introduce the property P gen

logic(S, k).

Definition 3. Let P gen
logic(S, k) be the property obtained by dropping the com-

putability restriction of the witness function θk in the definition of Plogic(S, k).

Clearly, Plogic(S, k) implies P gen
logic(S, k). It is also clear from the proof of The-

orem 2 that P gen
logic(S, k) entails PSC(k) = ∃k∀∗, though the former need not

entail an effective form of the latter. Also, it turns out that the converse of this
entailment is not true in general; the class S of all undirected cycles satisfies
PSC(k) = ∃k∀∗ for all k, but fails to satisfy Pgen

logic(S, k) for any k.
We now turn our attention to another seemingly unrelated property. We be-

gin with some notation. Given a vocabulary τ and k ∈ N, let τk denote the
vocabulary obtained by adding k new constant symbols to τ . Let S be a class of
structures. We use Sk to denote the class of all τk-structures whose τ -reducts are
structures in S. Given A,B ∈ Sk, we say that A embeds in B if A is isomorphic
to a substructure of B. Notationally, we represent this as A ↪→ B. Observe that
(Sk, ↪→) is a pre-order. We now define the property Pwqo(S, k) via the notion of
a pre-order being a well-quasi-order (w.q.o.) [4].

Definition 4. We say that Pwqo(S, k) holds if (Sk, ↪→) is a well-quasi-order.

Basic examples of classes satisfying Pwqo(S, k) are (i) a finite class, and (ii)
the class of all finite linear orders. Let Σ be a finite alphabet. In our notation,
the celebrated results such as Higman’s lemma and Kruskal’s tree theorem [4]
simply say that Pwqo(Words(Σ), 0) and Pwqo(Trees(Σ), 0) respectively hold. A
priori, there is no reason to expect any relation between the w.q.o.-based and the
logic-based properties defined above. Surprisingly, we have the following result.

Theorem 6. For any class S and any k ∈ N, Pwqo(S, k) implies Pgen
logic(S, k).
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It turns out however that Plogic(S, k) and Pwqo(S, k) are mutually incompa-
rable. We will present the proofs of these results in the journal version of the
paper. An important consequence of the above discussion is that Pwqo(S, k) en-
tails PSC(k) = ∃k∀∗. Note that this entailment also need not necessarily give
us an effective generalization of the �Loś-Tarski theorem. This highlights the im-
portance of our central notion, namely Plogic(S, k).

8 Conclusion

The study of preservation theorems over special classes of finite structures has
recently seen a revival of interest. This paper contributes to this line of work by
studying a logic-based combinatorial property that permits an effective version
of the generalized �Loś-Tarski theorem to hold over several well-studied classes of
finite structures. As future work, we wish to understand better the boundaries
of when the generalized �Loś-Tarski theorem, and more importantly, an effective
version of it, holds over classes of finite structures. The notion of well-quasi-
ordering has turned out to be of central importance in several areas of computer
science. In this context, Theorem 6 provides a new logic-based tool for proving
that certain classes are not well-quasi-ordered under the embedding relation on
structures. It also suggests that our formulations of the logic-based properties
might have applications even outside the realm of preservation theorems.
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