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We present new parameterized preservation properties that provide for each 
natural number k, semantic characterizations of the ∃k∀∗ and ∀k∃∗ prefix classes 
of first order logic sentences, over the class of all structures and for arbitrary 
finite vocabularies. These properties, that we call preservation under substructures 
modulo k-cruxes and preservation under k-ary covered extensions respectively, 
correspond exactly to the classical properties of preservation under substructures 
and preservation under extensions, when k equals 0. As a consequence, we get a 
parameterized generalization of the Łoś–Tarski preservation theorem for sentences, 
in both its substructural and extensional forms. We call our characterizations 
collectively the generalized Łoś–Tarski theorem for sentences. We generalize this 
theorem to theories, by showing that theories that are preserved under k-ary 
covered extensions are characterized by theories of ∀k∃∗ sentences, and theories that 
are preserved under substructures modulo k-cruxes, are equivalent, under a well-
motivated model-theoretic hypothesis, to theories of ∃k∀∗ sentences. In contrast to 
existing preservation properties in the literature that characterize the Σ0

2 and Π0
2

prefix classes of FO sentences, our preservation properties are combinatorial and 
finitary in nature, and stay non-trivial over finite structures as well.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Preservation theorems in first order logic (henceforth abbreviated FO) have been extensively studied 
in model theory. An FO preservation theorem for a model-theoretic operation syntactically characterizes 
elementary classes of structures that are closed under that operation. A classical preservation theorem (also 
one of the earliest) is the Łoś–Tarski theorem, which states that over the class of all (arbitrary) structures, 
an FO sentence is preserved under substructures if, and only if, it is equivalent to a universal sentence (see 
Theorem 3.2.2 in [3]). In dual form, the theorem states that an FO sentence is preserved under extensions 
if, and only if, it is equivalent to an existential sentence. It is well known that if the vocabulary contains 
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only relation symbols, then the sizes of the minimal models of a sentence preserved under extensions are 
no larger than the number of quantifiers in any equivalent existential sentence. Thus, the dual form of the 
Łoś–Tarski theorem not only asserts the equivalence of a syntactic and a semantic class of FO sentences, 
but also yields a relation between a quantitative model-theoretic property (i.e., sizes of minimal models) of 
a sentence in the semantic class and the count of quantifiers in an equivalent sentence in the syntactic class.

A syntactic subclass of FO that is semantically richer than the universal and existential classes of sen-
tences, is the Σ0

2 class – the class of all prenex sentences having prefix structure of the form ∃∗∀∗, i.e. 
sentences whose prefix structure consists of at most two blocks of quantifiers, with the leading block being 
existential. The literature contains several semantic characterizations, over the class of all structures, for 
this syntactic class using preservation properties defined in terms of notions such as ascending chains, de-
scending chains, and 1-sandwiches (see Theorem 3.2.3, Proposition 5.2.16 and Theorem 5.2.6 in [3]). These 
results, in dual form, give semantic characterizations of the Π0

2 class, which is the class of all ∀∗∃∗ sentences, 
i.e. prenex sentences whose prefix contains at most two blocks of quantifiers with the leading block being 
universal. However, none of these characterizations relates quantifier counts in the aforementioned syntactic 
classes to any model-theoretic properties.

In this paper, we take a step towards addressing this problem. Specifically, we present new preservation 
theorems that provide semantic characterizations of sentences in prenex normal form, having quantifier 
prefixes of the form ∃k∀∗ or ∀k∃∗, i.e., quantifier prefixes consisting of at most two blocks of quantifiers and in 
which the leading block has k quantifiers for a given natural number k. Towards these theorems, we introduce, 
for a given sentence ϕ and a model A of ϕ, the notions of a k-crux of A with respect to ϕ and a substructure 
of A modulo a k-crux. The latter notion corresponds exactly to the classical notion of substructure when 
k is equal to 0. We define the property of preservation under substructures modulo k-cruxes as a natural 
parameterized generalization of the property of preservation under substructures. Likewise, on the dual front, 
we introduce the notions of k-ary covers, k-ary covered extensions and preservation under k-ary covered 
extensions. The latter two notions reduce to the classical notions of extension and preservation under 
extensions respectively, when k equals 0. Our preservation theorems give syntactic characterizations of the 
above preservation properties. Specifically, we show for every natural number k, that (i) an FO sentence is 
preserved under substructures modulo k-cruxes if, and only if, it is equivalent to a prenex sentence having 
quantifier prefix of the form ∃k∀∗, and (ii) an FO sentence is preserved under k-ary covered extensions if, 
and only if, it is equivalent to a prenex sentence having quantifier prefix of the form ∀k∃∗. To the best of 
our knowledge, these results, that we collectively call the generalized Łoś–Tarski theorem for sentences, are 
the first to relate natural quantitative properties of models of sentences in a semantic class to counts of 
leading quantifiers in equivalent ∃∗∀∗ or ∀∗∃∗ sentences. They provide new and finer characterizations of 
the Σ0

2 and Π0
2 prefix classes vis-à-vis the characterizations of these classes in the literature.

In contrast to the existing preservation properties alluded to earlier, that characterize the Σ0
2 and Π0

2
classes, our preservation properties are combinatorial and finitary in nature, and stay non-trivial over finite 
structures as well. There has been a recent renewal of interest in preservation theorems in the context of finite 
model theory. Since most preservation theorems fail1 over the class of all finite structures, recent research [1,
2,4,6,7] has focused attention on studying classical preservation theorems over ‘well-behaved’ classes of finite 
structures. In particular, Atserias, Dawar and Grohe showed in [2] that under suitable closure assumptions, 
classes of structures that are acyclic or of bounded degree admit the Łoś–Tarski theorem for sentences. They 
also show the Łoś–Tarski theorem for sentences to be true over the class of all structures of tree-width at 
most k, for each natural number k (though the theorem is not necessarily true over proper subclasses of 
these classes). In a recent work [18], we identified many interesting classes of finite structures that admit 
the generalized Łoś–Tarski theorem for sentences. Specific examples include the classes of words, trees (as 
partial orders), structures of bounded tree-depth, grids of bounded dimension, various well-known subclasses 

1 A notable exception is the homomorphism preservation theorem [12].
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of co-graphs, etc. Some of these, like bounded tree-depth classes (that are proper subclasses of bounded 
tree-width classes), were earlier not known to even satisfy the Łoś–Tarski theorem. Thus, the preservation 
properties studied in this paper yield new preservation theorems in the contexts of both classical model 
theory and finite model theory.

The organization of this paper is as follows.
Section 2: We recall basic notions and the Łoś–Tarski theorem from the literature, and introduce notation 

used in the paper.
Section 3: We define the properties of ‘preservation under substructures modulo k-cruxes’ and ‘preser-

vation under k-ary covered extensions’, denoted PSC(k) and PCE(k) respectively, and formally show their 
duality.

Section 4: We first provide in subsection 4.1, a syntactic characterization of PCE(k) theories in terms 
of theories of ∀k∃∗ sentences. As a corollary, we obtain the generalized Łoś–Tarski theorem for sentences. 
We next show in subsection 4.2, that PSC (k) theories are equivalent to theories of Σ0

2 sentences, and 
that the converse is not true in general, even if all sentences of the Σ0

2 theory have at most one existential 
quantifier. We conclude the section by showing in subsection 4.3 that, under a well-motivated model-theoretic 
hypothesis, PSC (k) theories are equivalent to theories of ∃k∀∗ sentences (thereby refining the result proved 
in subsection 4.2). This is done by providing, under the hypothesis, a characterization of PSC(k) theories 
in terms of sentences of an infinitary logic, and then “compiling” these infinitary sentences “down to” their 
equivalent FO theories, using suitable finite approximations of the former.

Section 5: We define natural generalizations of the PSC(k) and PCE(k) properties, called preservation 
under substructures modulo finite cruxes and preservation under finitary covered extensions, respectively 
denoted PSC f and PCEf . We present duality and characterization results for these properties analogous 
to the results for PSC(k) and PCE(k). We present a comparison of PCEf and 

⋃
k≥0 PCE(k), and show 

that these properties surprisingly coincide for sentences, although the former strictly subsumes the latter in 
the case of theories. For the case of sentences, we show similar results for the relation between PSCf and ⋃

k≥0 PSC (k).
Section 6: We present a comparison of our notions and results with related work in the literature.
Section 7: We conclude with discussions and directions for future work.

2. Background

We will be concerned with only FO throughout this paper. We assume that the reader is familiar with 
standard notation and terminology used in the syntax and semantics of FO (see [3]). A vocabulary τ is a 
set of predicate, function and constant symbols. In this paper, we will always be concerned with arbitrary 
finite vocabularies, unless explicitly stated otherwise. We denote by FO(τ) the set of all FO formulae over 
vocabulary τ . A sequence (x1, . . . , xk) of variables is denoted by x̄. A formula ψ whose free variables are 
among x̄, is denoted by ψ(x̄). A formula with no free variables is called a sentence. A theory, resp. FO(τ)
theory, is a set of sentences, resp. a set of FO(τ) sentences. A theory, resp. FO(τ) theory, whose free variables 
are among x̄, is a set of formulae, resp. FO(τ) formulae, all of whose free variables are among x̄. We denote 
by N, the natural numbers including zero. We abbreviate a block of quantifiers of the form Qx1 . . . Qxk by 
Qkx̄ or Qx̄ (depending on what is better suited for the context), where Q ∈ {∀, ∃} and k ∈ N. By Q∗, we 
mean a block of k Q quantifiers, for some k ∈ N. For every non-zero k ∈ N, we denote by Σ0

k (resp. Π0
k), 

the class of all FO sentences in prenex normal form, whose quantifier prefix begins with ∃ (resp. ∀) and 
consists of k − 1 alternations of quantifiers. We call Σ0

1 formulae existential and Π0
1 formulae universal. We 

call Σ0
2 formulae with k existential quantifiers ∃k∀∗ formulae, and Π0

2 formulae with k universal quantifiers 
∀k∃∗ formulae. We use the standard notions of τ -structures (denoted A, B etc.; we refer to these simply 
as structures when τ is clear from context), substructures (denoted as A ⊆ B), extensions, isomorphisms 
(denoted A ∼= B), elementary equivalence (denoted A ≡ B), elementary substructures (denoted A � B) 
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and elementary extensions, as defined in [3], and study preservation theorems over the class of all (arbitrary) 
structures. By the size (or power) of a structure A, we mean the cardinality of its universe, and denote it 
by |A|.

We first recall the classical dual notions of preservation under substructures and preservation under 
extensions. We fix a vocabulary τ in our discussion below.

Definition 2.1. Let U be a class of structures.

1. A subclass S of U is said to be preserved under substructures over U , abbreviated as S is PS over U , if 
for each structure A ∈ S, if B ⊆ A and B ∈ U , then B ∈ S.

2. A subclass S of U is said to be preserved under extensions over U , abbreviated as S is PE over U , if 
for each structure A ∈ S, if A ⊆ B and B ∈ U , then B ∈ S.

If V and T are theories, then we say T is PS modulo V (resp. T is PE modulo V ) if the class of models of 
T ∪ V is PS (resp. PE) over the class of models of V . For a sentence φ, we say φ is PS modulo V (resp. φ
is PE modulo V ) if the theory {φ} is PS (resp. PE) modulo V .

As an example, let τ = {E} be the vocabulary consisting of a single relation symbol E that is binary, 
and let U be the class of all τ -structures in which E is interpreted as a symmetric binary relation. The class 
U can be seen as the class of all undirected graphs. Let S1 be the subclass of U consisting of all undirected 
graphs that are acyclic. Let S2 be the subclass of U consisting of all undirected graphs that contain a triangle 
as a subgraph. It is easy to see that S1 is PS over U , and S2 is PE over U . Observe that U is defined by 
the theory V = {∀x∀y (E(x, y) → E(y, x))}. Let ψn be the universal sentence that asserts the absence of a 
cycle of length n as a subgraph. Then S1 is exactly the class of models in U , of the theory T = {ψn | n ≥ 3}, 
and S2 is exactly the class of models in U , of the sentence φ = ¬ψ3. Whereby, T is PS modulo V , and φ is 
PE modulo V .

The following lemma shows the duality between PS and PE . Below, ‘iff’ denotes ‘if and only if’.

Lemma 2.2 (PS–PE duality). Let U be a class of structures, S be a subclass of U and S be the complement 
of S in U . Then S is PS over U iff S is PE over U . In particular, if U is defined by a theory V , then a 
sentence φ is PS modulo V iff ¬φ is PE modulo V .

The notion of a theory being PS modulo V or PE modulo V can be extended to theories with free 
variables in a natural manner. Given n ∈ N, denote by τn, the vocabulary obtained by expanding τ with 
n fresh and distinct constants symbols c1, . . . , cn. Let T (x̄) be an FO(τ) theory with free variables among 
x̄ = (x1, . . . , xn), and let T ′ be the FO(τn) theory obtained by substituting ci for xi in T (x̄), for each 
i ∈ {1, . . . , n}. Given a theory V , we say T (x̄) is PS modulo V if T ′ is PS modulo V , where V is treated as 
an FO(τn) theory. The notion T (x̄) is PE modulo V is defined similarly.

In the late ’40s, Jerzy Łoś and Alfred Tarski provided syntactic characterizations of theories that are PS
and theories that are PE via the following preservation theorem. This result and its proof set the trend for 
various other preservation theorems to follow.

Theorem 2.3 (Łoś–Tarski, 1949–1950). Let T (x̄) be a theory whose free variables are among x̄. Given a 
theory V , each of the following is true.

1. T (x̄) is PS modulo V iff T (x̄) is equivalent modulo V to a theory Y (x̄) of universal formulae, all of 
whose free variables are among x̄. If T (x̄) is a singleton, then so is Y (x̄).

2. T (x̄) is PE modulo V iff T (x̄) is equivalent modulo V to a theory Y (x̄) of existential formulae, all of 
whose free variables are among x̄. If T (x̄) is a singleton, then so is Y (x̄).
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In the remainder of the paper, if U , as mentioned in the definitions above, is clear from context, then we 
skip mentioning its associated qualifier, namely, ‘over U ’. Likewise, we skip mentioning ‘modulo V ’ when V
is clear from context.

3. Parameterized preservation properties generalizing PS and PE

3.1. Preservation under substructures modulo k-cruxes

Definition 3.1. Let U be a class of structures and k ∈ N. A subclass S of U is said to be preserved under 
substructures modulo k-cruxes over U , abbreviated as S is PSC (k) over U , if for every structure A ∈ S, 
there exists a subset C of the universe of A, of size at most k, such that if B ⊆ A, B contains C and B ∈ U , 
then B ∈ S. The set C is called a k-crux of A with respect to S over U . Any substructure B of A, that 
contains C is called a substructure of A modulo the k-crux C. Given theories V and T , we say T is PSC (k)
modulo V , if the class of models of T ∪ V is PSC (k) over the class of models of V . For a sentence φ, we say 
φ is PSC (k) modulo V if the theory {φ} is PSC (k) modulo V .

Let S, U , A, C, V , T and φ be as above. We abbreviate ‘with respect to’ as ‘w.r.t.’ henceforth. If U is 
defined by V and S is defined by T over U , then we say C is a k-crux of A w.r.t. T modulo V . If S is defined 
by φ over U , then we say C is a k-crux of A w.r.t. φ modulo V . As in the previous section, if any of S, U , 
T , V or φ is clear from context, then we skip mentioning its associated qualifier (viz., ‘w.r.t. S’, ‘over U ’, 
‘w.r.t. T ’, ‘modulo V ’ and ‘w.r.t. φ’ respectively) in the definitions above.

Remark 3.2. Note that Definition 3.1 is an adapted version of related definitions in [15,17] and [14]. The 
notion of ‘core’ in Definition 1 of [17] is exactly the notion of ‘crux’ defined above, when the underlying 
class U is the class of all structures. We avoid using the word ‘core’ for a crux to prevent confusion with 
existing notions of cores in the literature [1,8,12].

Example 3.3. Let the underlying class U be the class of all undirected graphs. Given k ∈ N, consider the 
class Sk of all graphs of U containing a cycle of length k as a subgraph. Clearly, for any graph G in Sk, the 
vertices of any cycle of length k in G form a k-crux of G w.r.t. Sk. Hence Sk is PSC (k). It is easy to see 
that Sk is definable by an FO sentence, call it φ, whereby φ is PSC (k).

Fix an underlying class U of structures. For properties P1 and P2 of subclasses of U , we denote by P1 ⇒ P2
that any subclass of U satisfying P1 also satisfies P2. We denote by P1 ⇔ P2 that P1 ⇒ P2 and P2 ⇒ P1. It 
is now easy to check the following facts concerning the PSC(k) subclasses of U : (i) PSC (0) coincides with 
the property of preservation under substructures, so PSC(0) ⇔ PS , (ii) PSC (l) ⇒ PSC (k) for l ≤ k. If U
is any substructure-closed class that contains infinitely many finite structures, then for each l, there exists 
k > l and a PSC (k) subclass S of U such that S is not PSC (l) over U . This is seen as follows. Given l, let 
k > l be such that there is some structure of size k in U , and let φk be the sentence asserting that there are 
at least k elements in any model. Clearly φk is PSC (k) over U but not PSC (l) over U .

Define the property PSC of subclasses of U as follows: A subclass S of U is PSC over U if it is PSC (k)
over U for some k ∈ N. Notationally, PSC ⇔

⋃
k≥0 PSC (k). If U is defined by a theory V , then the notions of 

‘a sentence is PSC modulo V ’ and ‘a theory is PSC modulo V ’ are defined similarly as in Definition 3.1. The 
implications mentioned in the previous paragraph show that PSC generalizes PS . If U is any substructure-
closed class that contains infinitely many finite structures, then the strict implications mentioned above 
show a strictly infinite hierarchy within PSC ; whence the latter provides a strict generalization of PS .

Suppose that U is defined by a theory V . Given a Σ0
2 sentence φ = ∃x1 . . .∃xk ∀ȳ ξ(x1, . . . , xk, ȳ) and a 

structure A of U such that A |= φ, any set of witnesses in A of the existential quantifiers of φ, forms a k-crux 
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of A. In particular, if a1, . . . , ak are witnesses in A, of the quantifiers associated with x1, . . . , xk (whence 
A |= ∀ȳ ξ(a1, a2, . . . , ak, ȳ)), then given any substructure B of A containing a1, . . . , ak, the latter elements 
can again be chosen as witnesses in B, to make φ true in B. Therefore, φ is PSC (k) (modulo V ).

Remark 3.4. Contrary to intuition, witnesses and k-cruxes cannot always be equated! Consider the sentence 
φ = ∃x∀yE(x, y) and the structure A = (N, ≤), i.e. the natural numbers with the usual ordering. Let U be 
the class of all structures. Clearly, φ is PSC (1), A |= φ and the only witness of the existential quantifier 
of φ in A is the minimum element 0 ∈ N. In contrast, every singleton subset of N is a 1-crux of A because 
each substructure of A contains a minimum element under the induced order; this in turn is due to ≤ being 
a well-ordering of N. This example shows that there can be models in which there are many more (even 
infinitely more) cruxes than witnesses.

Since Σ0
1 and Π0

1 sentences are also Σ0
2 sentences and the latter are PSC , the former are also PSC . 

However, Π0
2 sentences are not necessarily PSC . Consider φ = ∀x∃yE(x, y) and consider the model A of φ

given by A = (N, EA = {(i, i + 1) | i ∈ N}). It is easy to check that no finite substructure of A models φ; 
then A does not have any k-crux for any k ∈ N, whence φ is not PSC (k) for any k, and hence is not PSC .

3.2. Preservation under k-ary covered extensions

The classical notion of “extension of a structure” has a natural generalization to the notion of extension 
of a collection of structures as follows. A structure A is said to be an extension of a collection R of structures 
if for each B ∈ R, we have B ⊆ A. We now define a special kind of extensions of a collection of structures.

Definition 3.5. For k ∈ N, a structure A is said to be a k-ary covered extension of a non-empty collection R
of structures if (i) A is an extension of R, and (ii) for every subset C of the universe of A, of size at most k, 
there is a structure in R that contains C. We call R a k-ary cover of A.

Example 3.6. Let A be a graph on n vertices and let R be the collection of all r sized induced subgraphs 
of A, where 1 ≤ r ≤ n. Then A is a k-ary covered extension of R for every k in {0, . . . , r}.

Remark 3.7. Note that a 0-ary covered extension of R is simply an extension of R. For k > 0, the universe of a 
k-ary covered extension of R is necessarily the union of the universes of the structures in R. However, different 
k-ary covered extensions of R can differ in the interpretation of predicates (if any) of arity greater than k. 
Note also that a k-ary covered extension of R is an l-ary covered extension of R for every l ∈ {0, . . . , k}.

Definition 3.8. Let U be a class of structures and k ∈ N. A subclass S of U is said to be preserved under 
k-ary covered extensions over U , abbreviated as S is PCE(k) over U , if for every collection R of structures 
of S, if A is a k-ary covered extension of R and A ∈ U , then A ∈ S. Given theories V and T , we say T is 
PCE(k) modulo V if the class of models of T ∪V is PCE(k) over the class of models of V . For a sentence φ, 
we say φ is PCE(k) modulo V if the theory {φ} is PCE(k) modulo V .

As in the previous subsection, if any of U or V is clear from context, then we skip mentioning its associated 
qualifier. The following lemma establishes the duality between PSC(k) and PCE(k), generalizing the duality 
between PS and PE given by Lemma 2.2.

Lemma 3.9 (PSC (k)–PCE(k) duality). Let U be a class of structures, S be a subclass of U and S be the 
complement of S in U . Then S is PSC (k) over U iff S is PCE(k) over U , for each k ∈ N. In particular, if 
U is defined by a theory V , then a sentence φ is PSC (k) modulo V iff ¬φ is PCE(k) modulo V .
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Proof. If: Suppose S is PCE(k) over U but S is not PSC (k) over U . Then there exists A ∈ S such that 
for every set C of at most k elements of A, there is a substructure BC of A that (i) contains C, and (ii) 
belongs to U \ S, i.e. belongs to S. Then R = {BC | C is a subset of A, of size at most k} is a k-ary cover 
of A. Since S is PCE(k) over U , it follows that A ∈ S – a contradiction.

Only If: Suppose S is PSC (k) over U but S is not PCE(k) over U . Then there exists A ∈ S and a k-ary 
cover R of A such that every structure B of R belongs to S. Since S is PSC (k) over U , there exists a k-crux 
C of A w.r.t. S over U . Consider the structure BC ∈ R that contains C – this exists since R is a k-ary cover 
of A. Then BC ∈ S since C is a k-crux of A – a contradiction. �

Fix an underlying class U of structures. Analogous to the notion of PSC , we define the notion of PCE
as PCE ⇔

⋃
k≥0 PCE(k). The notion of a class, a sentence and a theory, being PCE is defined analogously 

to corresponding notions for PSC . Then from the observations in the previous subsection, Remark 3.7 and 
Lemma 3.9 above, we see that (i) PCE(0) ⇔ PE , (ii) PCE(l) ⇒ PCE(k) for l ≤ k, and (iii) a subclass S of 
U is PSC over U iff the complement S of S in U , is PCE over U . Further, if U is defined by a theory V , then 
all Π0

2 sentences having at most k universal quantifiers are PCE(k) (modulo V ) and hence PCE , whereby 
all Σ0

1 and Π0
1 sentences are PCE as well. However Σ0

2 sentences, in general, are not PCE since, as seen 
towards the end of the previous subsection, Π0

2 sentences are, in general, not PSC .

4. Syntactic characterizations

Given an FO(τ) theory T (x̄) whose free variables are among x̄ = (x1, . . . , xn), we first define the notion of 
T (x̄) being P modulo V , for a given theory V , where P ∈ {PSC (k), PSC , PCE(k), PCE}. As in Section 2, 
let c1, . . . , cn be the distinct constant symbols of τn \ τ , and let T ′ be the FO(τn) theory obtained by 
substituting ci for xi in T (x̄), for each i ∈ {1, . . . , n}. Then we say T (x̄) is P modulo V if T ′ is P modulo V , 
where V is treated as an FO(τn) theory.

4.1. Characterization of PCE(k) theories

The central result of this subsection is as follows.

Theorem 4.1. Let V and T (x̄) be theories, and k ∈ N. Then T (x̄) is PCE(k) modulo V iff T (x̄) is equivalent 
modulo V to a theory of Π0

2 formulae, all of whose free variables are among x̄, and all of which have k
universal quantifiers.

We prove Theorem 4.1 for theories T without any free variables; the proof for theories with free variables 
follows from definitions. Our proof below crucially involves the use of λ-saturated structures, so we refer the 
reader to Chapter 5 of [3] for all the results concerning them that we make use of.

We first introduce some terminology and notation. Given theories T and V , we say that Γ is the set of 
∀k∃∗ consequences of T modulo V if Γ = {ϕ | ϕ is a ∀k∃∗ sentence and (V ∪ T ) � ϕ}. Let A be a structure 
and ā be a k-tuple of elements of A. We denote by th(A), the theory of A, i.e. the set of all FO sentences 
that are true in A. We let tpA,ā(x1, . . . , xk) denote the FO-type of ā in A, i.e. the set of all FO formulae, all 
of whose free variables are among x1, . . . , xk, that are true of ā in A. By tpΠ,A,ā(x1, . . . , xk), we denote the 
Π0

1-type of ā in A, i.e. the subset of tpA,ā(x1, . . . , xk) that consists of all Π0
1 formulae of tpA,ā(x1, . . . , xk). 

The following lemma is key to the proof.

Lemma 4.2. Let V and T be consistent theories, and k ∈ N. Let Γ be the set of ∀k∃∗ consequences of T
modulo V . Then for all infinite cardinals λ, for every λ-saturated structure A that models V , we have that 
A |= Γ iff there exists a k-ary cover R of A such that B |= (V ∪ T ) for every B ∈ R.
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Proof. The ‘If’ direction is easy: for each B ∈ R, since B |= (V ∪ T ), we have B |= ϕ for each ϕ ∈ Γ. From 
the discussion in Section 3.2, any ∀k∃∗ sentence is PCE(k) modulo V . Then since R is a k-ary cover of A, 
we have A |= ϕ for each ϕ ∈ Γ.

For the ‘Only If’ direction, let the vocabulary of V and T be τ . We show that for every k-tuple ā of 
A, there is a substructure Aā of A containing (the elements of) ā such that Aā |= (V ∪ T ). Then the set 
R = {Aā | ā is a k-tuple of A} forms the desired k-ary cover of A. To show the existence of Aā, it suffices 
to show that there exists a τ -structure B such that (i) |B| ≤ λ, (ii) B |= (V ∪ T ), and (iii) the Π0

1-type 
of ā in A, namely tpΠ,A,ā(x1, . . . , xk), is realized in B by some k-tuple, say b̄. Then every Σ0

1 sentence of 
FO(τk) true in (B, ̄b) is also true in (A, ̄a). Since A is λ-saturated, we have that (A, ̄a) is also λ-saturated. 
There exists then, an isomorphic embedding f : (B, ̄b) → (A, ̄a), whereby the τ -reduct of the image of (B, ̄b)
under f can serve as Aā. The proof is therefore completed by showing the existence of B with the above 
properties.

Suppose Z(x1, . . . , xk) = V ∪ T ∪ tpΠ,A,ā(x1, . . . , xk) is inconsistent. By the compactness theorem, there 
is a finite subset of Z(x1, . . . , xk) that is inconsistent. Since tpΠ,A,ā(x1, . . . , xk) is closed under taking finite 
conjunctions and since each of tpΠ,A,ā(x1, . . . , xk), V and T is consistent, there is a formula ψ(x1, . . . , xk) in 
tpΠ,A,ā(x1, . . . , xk) such that V ∪T∪{ψ(x1, . . . , xk)} is inconsistent. In other words, (V ∪T ) � ¬ψ(x1, . . . , xk). 
By ∀-introduction, we have (V ∪ T ) � ϕ, where ϕ = ∀x1 . . .∀xk¬ψ(x1, . . . , xk). Observe that ϕ is a ∀k∃∗
sentence; then by the definition of Γ, we have ϕ ∈ Γ, and hence A |= ϕ. Instantiating the k-tuple (x1, . . . , xk)
as ā, we have (A, ̄a) |= ¬ψ(x1, . . . , xk), contradicting the fact that ψ(x1, . . . , xk) ∈ tpΠ,A,ā(x1, . . . , xk). Then 
Z(x1, . . . , xk) must be consistent. By the downward Löwenheim–Skolem theorem, there is a model (B, ̄b) of 
Z(x1, . . . , xk) of power at most λ; then B is as desired. �

The following lemma is straightforward.

Lemma 4.3. Let U be a class of structures. For an index set I, let {Si | i ∈ I} be a collection of subclasses 
of U such that Si is PCE(k) over U , for each i ∈ I. Then 

⋂
i∈I Si is PCE(k) over U .

We can now prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Suppose T is equivalent modulo V to a theory Y = {ϕi | ϕi is a ∀k∃∗ sentence, i ≥ 1}. 
Then ϕi is PCE(k) modulo V for each i ≥ 1. It follows from Lemma 4.3 that Y is PCE(k) modulo V , 
whereby T is PCE(k) modulo V .

In the converse direction, suppose T is PCE(k) modulo V . If V ∪ T is unsatisfiable, we are trivially 
done. Otherwise, let Γ be the set of ∀k∃∗ consequences of T modulo V . Then (V ∪ T ) � Γ. We show below 
that (V ∪ Γ) � T , thereby showing that T is equivalent to Γ modulo V . Suppose A |= (V ∪ Γ). Consider 
a λ-saturated elementary extension A+ of A, for some λ ≥ ω. Then A+ |= (V ∪ Γ). By Lemma 4.2, there 
exists a k-ary cover R of A+ such that B |= (V ∪ T ) for every B ∈ R. Since T is PCE(k) modulo V , it 
follows that A+ |= T . Finally, since A � A+, we have A |= T . �

An important corollary of Theorem 4.1 is as stated below.

Corollary 4.4. Given a theory V , a formula φ(x̄) is PCE(k) modulo V iff φ(x̄) is equivalent modulo V to a 
Π0

2 formula whose free variables are among x̄, and that has k universal quantifiers.

Proof. Follows from the compactness theorem and the fact that a finite conjunction of ∀k∃∗ formulae is 
equivalent to a single ∀k∃∗ formula. �
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4.2. Characterization of PSC (k) theories

The central result of this subsection is as follows.

Theorem 4.5. Let V and T (x̄) be theories, and suppose that T (x̄) is PSC (k) modulo V for some k ∈ N. 
Then T (x̄) is equivalent modulo V to a theory of Σ0

2 formulae, all of whose free variables are among x̄.

The converse of the above theorem is however not true. Lemma 4.12 presented towards the end of 
this subsection, gives an example of a theory of Σ0

2 sentences, each of whose sentences contains only one 
existential quantifier, and that is not PSC (k) for any k ∈ N. For the case of sentences however, we have the 
following characterization, that follows directly from Corollary 4.4 and Lemma 3.9.

Corollary 4.6. Given a theory V , a formula φ(x̄) is PSC (k) modulo V iff φ(x̄) is equivalent modulo V to a 
Σ0

2 formula whose free variables are among x̄, and that has k existential quantifiers.

The approach of ‘dualizing’ adopted in proving Corollary 4.6 cannot work for characterizing theories 
that are PSC (k) since the negation of an FO theory might, in general, not be equivalent to any FO theory. 
Although it is unclear at present what syntactic fragment of FO theories serves as a characterization for 
PSC (k) theories, Theorem 4.5 shows that such a syntactic fragment is semantically contained inside Σ0

2
theories.

We prove Theorem 4.5 for theories without free variables. The proof for theories with free variables 
follows from definitions. Towards the proof, we recall the notion of sandwiches as defined by Keisler in [9]. 
We say that a triple (A, B, C) of structures is a sandwich if A � C and A ⊆ B ⊆ C. Given structures A
and B, we say that B is sandwiched by A if there exist structures A′ and B′ such that (i) B � B′ and 
(ii) (A, B′, A′) is a sandwich. Given theories V and T , we say T is preserved under sandwiches by models 
of T modulo V if for each model A of V ∪ T , if B is sandwiched by A and B models V , then B models T . 
The following theorem of Keisler (Corollary 5.2 of [9]) gives a syntactic characterization of the aforesaid 
preservation property in terms of Σ0

2 theories.

Theorem 4.7 (Keisler, 1960). Let V and T be theories. Then T is preserved under sandwiches by models of 
T modulo V iff T is equivalent modulo V to a theory of Σ0

2 sentences.

To prove Theorem 4.5, it then suffices to show that if T is PSC (k) modulo V , then T is preserved under 
sandwiches by models of T modulo V . To do this, we first prove the following lemmas.

Lemma 4.8 (Sandwich by saturated structures). Let A1 and B1 be structures such that B1 is sandwiched 
by A1. Then for each λ ≥ ω, for every λ-saturated elementary extension A of A1, there exists a structure 
B isomorphic to B1 such that B is sandwiched by A.

Lemma 4.9 (Preservation under sandwich by saturated models). Let V and T be theories such that T is 
PSC (k) modulo V for some k ∈ N. Let A be a λ-saturated model of V ∪ T , for some λ ≥ ω, and let B be a 
model of V . If B is sandwiched by A, then B is a model of T .

Using the above lemmas, we can prove Theorem 4.5, as follows.

Proof of Theorem 4.5. Let T be PSC (k) modulo V . It suffices to show that T is preserved under sandwiches 
by models of T modulo V . Suppose A1 and B1 are given structures such that B1 is sandwiched by A1, 
B1 |= V and A1 |= V ∪ T . Consider a λ-saturated elementary extension A of A1, for some λ ≥ ω. By 
Lemma 4.8, there exists a structure B isomorphic to B1 such that B is sandwiched by A. Then A |= (V ∪T )



198 A. Sankaran et al. / Annals of Pure and Applied Logic 167 (2016) 189–210
and B |= V , whence by Lemma 4.9, we have B |= T . Since B1 ∼= B, we have B1 |= T , completing the 
proof. �

We now prove Lemmas 4.8 and 4.9. We first introduce some notation. Given a τ -structure A, we denote by 
τA the vocabulary obtained by expanding τ with |A| fresh constants – one constant per element of A. Given 
a τ -structure B such that A ⊆ B, we denote by BA, the τA-structure whose τ -reduct is B and in which the 
constant in τA \τ corresponding to an element a of A, is interpreted as a itself. In particular therefore, AA is 
a τA-structure whose τ -reduct is A and in which every element of the universe is an interpretation of exactly 
one constant in τA \ τ . By Diag(A), resp. El-diag(A), we mean the diagram, resp. elementary diagram of A, 
i.e. the set of all quantifier-free FO(τA) sentences, resp. arbitrary FO(τA) sentences, that are true in AA. 
Observe that each of Diag(A) and El-diag(A) is closed under finite conjunctions. Finally, A �1 B denotes 
that (i) A ⊆ B and (ii) every Σ0

1 sentence of FO(τA) true in BA is also true in AA.

Lemma 4.10. A �1 B iff there exists A′ such that (A, B, A′) is a sandwich.

Proof. The ‘If’ direction follows easily from the definition of elementary substructure and the fact that exis-
tential formulae are preserved under extensions. For the converse, suppose that A �1 B. Let the vocabularies 
τB and τA be such that for every element a of A, the constant in τB corresponding to a is the same as the 
constant in τA corresponding to a (and hence the constants in τB \ τA correspond exactly to the elements in 
B that are not in A). Now consider the theory Y given by Y = Diag(B) ∪El-diag(A). Any non-empty finite 
subset of Diag(B), resp. El-diag(A), is satisfied in BB, resp. AA. Let Z be any finite subset of Y , that has a 
non-empty intersection with both Diag(B) and El-diag(A); we can consider Z as given by Z = {ξ, ψ} where 
ξ ∈ Diag(B) and ψ ∈ El-diag(A). Let c1, . . . , cr be the (distinct) constants of τB \ τA appearing in ξ, and 
let x1, . . . , xr be fresh variables. Consider the sentence φ given by φ = ∃x1 . . .∃xrξ [c1 �→ x1; . . . ; cr �→ xr], 
where ci �→ xi denotes substitution of xi for ci, for 1 ≤ i ≤ r. Observe that φ is a Σ0

1 sentence of FO(τA) and 
that BA |= φ. Since A �1 B, we have that AA |= φ. Let a1, . . . , ar be the witnesses in AA, of the quantifiers 
of φ corresponding to variables x1, . . . , xr. Interpreting the constants c1, . . . , cr as a1, . . . , ar respectively, 
we see that (AA, a1, . . . , ar) |= Z. Since Z is an arbitrary finite subset of Y , by the compactness theorem, 
Y is satisfied in a τB-structure C. The τ -reduct of C is the desired structure A′. �
Proof of Lemma 4.8. Let A be a λ-saturated elementary extension of A1, for some λ ≥ ω. We show below 
the existence of a structure B2 such that (i) A �1 B2 and (ii) B1 is elementarily embeddable in B2 via an 
embedding say f . Let B be the image of B1 under f ; then B ∼= B1 and B � B2. By Lemma 4.10, there 
exists a structure A2 such that (A, B2, A2) is a sandwich, whence B is sandwiched by A. Then B is indeed 
as desired. For our arguments below, we make the following observation, call it (*): If B is sandwiched by A, 
then every Σ0

2 sentence true in A is also true in B. This follows simply from Theorem 4.7 by taking T to 
be the set of all Σ0

2 sentences that are true in A, and taking V to be the empty theory.
Let τ be the vocabulary of A and B1, and let τA and τB1 be such that τA ∩ τB1 = τ . Consider the 

theory Y given by Y = SΠ(AA) ∪ El-diag(B1), where SΠ(AA) denotes the set of all Π0
1 sentences true in 

AA. Observe that SΠ(AA) is closed under finite conjunctions. Let Z be any non-empty finite subset of Y . 
If Z ⊆ SΠ(AA) or Z ⊆ El-diag(B1), then Z is clearly satisfiable. Else, Z = {ξ, ψ} where ξ ∈ SΠ(AA) and 
ψ ∈ El-diag(B1). Let c1, . . . , cr be the (distinct) constants of τA \ τ appearing in ξ, and let x1, . . . , xr be 
fresh variables. Consider the sentence φ given by φ = ∃x1 . . .∃xrξ [c1 �→ x1; . . . ; cr �→ xr], where ci �→ xi

denotes substitution of xi for ci, for 1 ≤ i ≤ r. Clearly A |= φ, whence A1 |= φ. Since B1 is sandwiched 
by A1 and φ is a Σ0

2 sentence, it follows from observation (*) above, that B1 |= φ. Let b1, . . . , br be the 
witnesses in B1 of the quantifiers of φ associated with x1, . . . , xr. One can now check that if R = B1, then 
(RR, b1, . . . , br) |= Z. Since Z is an arbitrary finite subset of Y , by compactness theorem, Y is satisfiable. 
Whereby, there exists a τ -structure B2 such that (i) A �1 B2 and (ii) B1 is elementarily embeddable 
in B2. �
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We now turn to proving Lemma 4.9. Recall from the previous subsection that for a structure A and a 
k-tuple ā of A, we denote by tpΠ,A,ā(x1, . . . , xk) the Π0

1-type of ā in A. Given theories V and T such that T
is PSC (k) modulo V , we say that tpΠ,A,ā(x1, . . . , xk) determines a k-crux w.r.t. T modulo V if it is the case 
that for any model D of V and a k-tuple d̄ of D, if (D, d̄) |= tpΠ,A,ā(x1, . . . , xk), then D |= T . Since universal 
formulae are preserved under substructures, it follows that for D as just mentioned, the elements of d̄ form 
a k-crux of D w.r.t. T modulo V . To prove Lemma 4.9, we need the next result which characterizes when 
a Π0

1-type determines a k-crux.

Lemma 4.11 (Characterizing “crux determination”). Given theories V and T , let T be PSC (k) modulo V
for some k ∈ N. Let A |= V and let ā be a k-tuple of A. Then tpΠ,A,ā(x1, . . . , xk) determines a k-crux w.r.t. 
T modulo V iff A |= T and for some λ ≥ ω, there exists a λ-saturated elementary extension B of A (hence 
B |= (V ∪ T )) such that the elements of ā form a k-crux of B w.r.t. T modulo V .

Proof. ‘Only If’: Since A |= V and (A, ̄a) |= tpΠ,A,ā(x1, . . . , xk), we have that A |= T . Let B be a λ-saturated 
elementary extension of A, for some λ ≥ ω; then B |= (V ∪ T ) and (B, ̄a) |= tpΠ,A,ā(x1, . . . , xk). Let 
C ⊆ B be such that C contains ā and C |= V . Since universal formulae are preserved under substructures, 
(C, ̄a) |= tpΠ,A,ā(x1, . . . , xk), whence C |= T . Then, elements of ā form a k-crux of B w.r.t. T modulo V .

‘If’: Let A, B and ā be as mentioned in the statement. Consider a model D of V and a k-tuple d̄ of D
such that (D, d̄) |= tpΠ,A,ā(x1, . . . , xk). By the downward Löwenheim–Skolem theorem, there exists D1 � D

such that (i) D1 contains d̄ and (ii) |D1| ≤ ω. Then (D1, d̄) |= tpΠ,A,ā(x1, . . . , xk). Now since A � B, we 
have that tpΠ,B,ā(x1, . . . , xk) = tpΠ,A,ā(x1, . . . , xk). Then every existential sentence that is true in (D1, d̄)
is also true in (B, ̄a). Since B is λ-saturated, (B, ̄a) is also λ-saturated. Further, since |D1| ≤ ω, we have 
|(D1, d̄)| ≤ ω ≤ λ. Then there exists an isomorphic embedding f : (D1, d̄) → (B, ̄a). The image of (D1, d̄)
under f is a substructure (B1, ̄a) of (B, ̄a) such that (D1, d̄) ∼= (B1, ̄a). Since D1 � D and D |= V , we have 
B1 |= V . Further since the elements of ā form a k-crux of B w.r.t. T modulo V (by assumption), we have 
B1 |= T . Then D1, and hence D, models T , completing the proof. �
Proof of Lemma 4.9. We will assume the vocabulary to be τ . Since B is sandwiched by A, there exist 
structures A1 and B1 such that (i) B � B1 and (ii) (A, B1, A1) is a sandwich. Let D be a μ-saturated 
elementary extension of A1, for some μ ≥ ω. Then A � D. Since A models V ∪ T , so does D.

Now, given that T is PSC (k) modulo V , there exists a k-crux of D w.r.t. T modulo V ; let d̄ be any k-tuple 
formed from this k-crux. Consider tpD,d̄(x1, . . . , xk), namely the FO-type of d̄ in D. Since A � D, we have 
th(A) = th(D), whence tpD,d̄(x1, . . . , xk) is consistent with th(A). Since A is λ-saturated, we have by defini-
tion that tpD,d̄(x1, . . . , xk) is realized in A by a k-tuple say ā, i.e. tpA,ā(x1, . . . , xk) = tpD,d̄(x1, . . . , xk). Then 
since A � D, it follows that the FO-type of ā in D, namely tpD,ā(x1, . . . , xk), is exactly tpA,ā(x1, . . . , xk). 
Whence, tpΠ,D,ā(x1, . . . , xk) = tpΠ,A,ā(x1, . . . , xk) = tpΠ,D,d̄(x1, . . . , xk). Now since (i) D |= (V ∪ T ), (ii) D

is μ-saturated, and (iii) elements of d̄ form a k-crux of D w.r.t. T modulo V , we have by Lemma 4.11, 
that tpΠ,D,d̄(x1, . . . , xk), and hence tpΠ,D,ā(x1, . . . , xk), determines a k-crux w.r.t. T modulo V . Whence 
the elements of ā form a k-crux of D w.r.t. T modulo V . Since (i) B1 ⊆ D, (ii) B1 contains ā and (iii) 
B1 |= V (since B |= V and B � B1), we have by definition of a k-crux, that B1 |= T , whence B |= T . �

We conclude this section with the following lemma.

Lemma 4.12. There exist theories V and T such that (i) each sentence of T is a Σ0
2 sentence having exactly 

one existential quantifier, and (ii) T is not PSC (k) modulo V , for any k ∈ N.

Proof. Let V = {∀x∀y(E(x, y) → E(y, x))} be the theory that defines exactly all undirected graphs. For 
n ≥ 1, let ϕn(x) be a formula asserting that x is not a part of a cycle of length n. Explicitly, ϕ1(x) = ¬E(x, x)
and for n ≥ 1, we have ϕn+1(x) = ¬∃z1 . . .∃zn

(
(
∧

zi �= zj) ∧ (
∧i=n(x �= zi)) ∧E(x, z1) ∧E(zn, x) ∧
1≤i<j≤n i=1
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∧i=n−1
i=1 E(zi, zi+1)

)
. Consider χn(x) =

∧i=n
i=1 ϕi(x) which asserts that x is not a part of any cycle of length 

≤ n. Observe that χn(x) is a universal formula. Also, if m ≤ n, then χn(x) → χm(x).
Now consider the theory T = {ψn | n ≥ 1}, where ψn = ∃xχn(x). Each sentence of T is a Σ0

2 sentence 
having only one existential variable. We show below that T is not PSC (k) modulo V , for any k ∈ N.

Consider the infinite graph G given by G = �i≥3 Ci where Ci is the cycle graph of length i and �
denotes disjoint union. Any vertex x of Ci satisfies χj(x) in G, for j < i. Then G |= T . Now consider any 
finite set S of vertices of G. Let r be the highest index such that some vertex in S is in the cycle Cr. Consider 
the subgraph G1 of G induced by the vertices of all the cycles in G of length ≤ r. Then no vertex x of 
G1 satisfies χl(x) for l > r. Then G1 �|= T , whence S cannot be a k-crux of G w.r.t. T modulo V , for any 
k ≥ |S|. Since S was an arbitrary finite subset of G, we conclude that G has no k-crux w.r.t. T modulo V , 
for any k ∈ N; whence T is not PSC (k) modulo V , for any k ∈ N. �
4.3. A conditional refinement of Theorem 4.5

Theorem 4.5, while showing that a PSC (k) theory is always equivalent to a Σ0
2 theory, does not tell us 

anything about the maximum number of existential quantifiers that can appear in any sentence of the Σ0
2

theory. Given Corollary 4.6 that asserts that a PSC (k) sentence is always equivalent to an ∃k∀∗ sentence, 
it is natural to ask whether a PSC(k) theory is equivalent to a theory of ∃k∀∗ sentences. We answer this 
question in the affirmative – thereby refining Theorem 4.5 – under the hypothesis that every model of a 
PSC (k) theory always contains a k-tuple whose Π0

1-type determines a k-crux. The technique of our proof 
is as presented below.

1. We first define a variant of PSC (k), denoted PSC var(k), into whose definition we build the hypothesis.
2. We then show that PSC var(k) theories are equivalent to theories of ∃k∀∗ sentences. This is done in the 

following two steps:
• “Going up”: We give a characterization of PSC var(k) theories in terms of sentences of a special 

infinitary logic (Lemma 4.22).
• “Coming down”: We provide a translation of sentences of the aforesaid infinitary logic, into their 

equivalent FO theories, whenever these sentences define elementary classes of structures (Propo-
sition 4.23). The FO theories are obtained from suitable finite approximations of the infinitary 
sentences, and turn out to be theories of ∃k∀∗ sentences.

3. We hypothesize that PSC var(k) theories are no different from PSC (k) theories to get the refinement of 
Theorem 4.5, referred to at the outset (Theorem 4.20 and Remark 4.21). To show that this hypothesis is 
well-motivated, we define a variant of PCE(k), denoted PCEvar(k), that is dual to PSC var(k). We show 
that PCEvar(k) coincides with PCE(k) for theories, and use this to conclude that PSC var(k) coincides 
with PSC (k) for sentences (Lemma 4.18).

Throughout the section, whenever V and T are clear from the context, we skip mentioning the qualifier 
‘w.r.t. T modulo V ’ for a k-crux, if T is PSC (k) modulo V . If T is PSC (k) modulo V and A is a model 
of V ∪ T , then we abuse terminology and call a k-tuple ā of A as a k-crux of A, if the underlying set of 
elements of ā forms a k-crux of A. Before we present the definitions of PSC var(k) and PCEvar(k), we first 
define the notions of ‘distinguished k-crux’ and ‘k-ary cover of a structure A in an elementary extension 
of A’.

Definition 4.13. Suppose T is PSC (k) modulo V for theories T and V . Given a model A of V ∪ T , we call 
a k-tuple ā of A a distinguished k-crux of A, if for some λ ≥ ω, there is a λ-saturated elementary extension 
A+ of A (whence A+ |= (V ∪ T )) such that ā is a k-crux of A+ (whence ā is also a k-crux of A).
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Remark 4.14. From Lemma 4.11, we can see that ā is a distinguished k-crux of A iff tpΠ,A,ā(x1, . . . , xk)
determines a k-crux.

Definition 4.15. Let A be a structure and A+ be an elementary extension of A. A non-empty collection R
of substructures of A+ is said to be a k-ary cover of A in A+ if for every k-tuple ā of elements of A, there 
exists a structure in R containing ā.

Observe that the notion of a ‘k-ary cover of A’ as in Definition 3.5 corresponds to the notion in Defini-
tion 4.15 above, with A+ being the same as A.

Definition 4.16. Let V and T be theories.

1. We say T is PSC var(k) modulo V if T is PSC (k) modulo V and every model of V ∪ T contains a 
distinguished k-crux.

2. We say T is PCEvar(k) modulo V if for every model A of V , there exists a λ-saturated elementary 
extension A+ of A for some λ ≥ ω, such that for every collection R of models of V ∪ T , if R is a k-ary 
cover of A in A+, then A |= T .

If φ(x̄) and T (x̄) are respectively a formula and a theory, each of whose free variables are among x̄, then 
for a theory V , the notions of ‘φ(x̄) is PSC var(k) (resp. PCEvar(k)) modulo V ’ and ‘T (x̄) is PSC var(k)
(resp. PCEvar(k)) modulo V ’ are defined similar to corresponding notions for PSC (k) (resp. PCE(k)). The 
following duality is easy to see.

Lemma 4.17 (PSC var(k)–PCEvar(k) duality). Given a theory V , a formula φ(x̄) is PSC var(k) modulo V
iff ¬φ(x̄) is PCEvar(k) modulo V .

Towards the central result of this subsection, we first show the following.

Lemma 4.18. Given a theory V , each of the following holds.

1. A formula φ(x̄) is PSC (k) modulo V iff φ(x̄) is PSC var(k) modulo V .
2. A theory T (x̄) is PCE(k) modulo V iff T (x̄) is PCEvar(k) modulo V .

Proof. We show below the following equivalence, call it (†): A theory T (x̄) is PCEvar(k) modulo V iff T (x̄)
is equivalent modulo V to a theory of ∀k∃∗ formulae, all of whose free variables are among x̄. Then Part (2) 
of this lemma follows from (†) and Theorem 4.1. Part (1) of the lemma in turn follows from Part (2) and 
the dualities given by Lemma 3.9 and Lemma 4.17.

Given the observation following Definition 4.15, we can prove the ‘Only if’ direction of (†) in a manner 
identical to the proof of the ‘Only if’ direction of Theorem 4.1. The proof of the ‘If’ direction of (†) is also 
nearly the same as that of the ‘If’ direction of Theorem 4.1; we present this proof below for completeness. 
It suffices to give the proof for theories without free variables.

Let T be equivalent modulo V to a theory of ∀k∃∗ sentences. Given a model A of V , let A+ be a 
λ-saturated elementary extension of A, for some λ ≥ ω. Let R be a collection of models of V ∪ T that 
forms a k-ary cover of A in A+. We show that A |= T . Consider ϕ ∈ T ; let ϕ = ∀kx̄ψ(x̄) for a Σ0

1 formula 
ψ(x̄), and let ā be a k-tuple of A. Since R is a k-ary cover of A in A+, there exists Bā ∈ R such that Bā

contains ā. Since Bā |= (V ∪ T ), we have Bā |= ϕ and hence (Bā, ̄a) |= ψ(x̄). Since ψ(x̄) is a Σ0
1 formula 

and Bā ⊆ A+, we have (A+, ̄a) |= ψ(x̄), whence (A, ̄a) |= ψ(x̄) since A � A+. Since ā is arbitrary, A |= ϕ, 
and since ϕ is an arbitrary sentence of T , we have A |= T . �
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Motivated by Lemma 4.18, we put forth the hypothesis below.

Hypothesis 4.19. If V and T (x̄) are theories, then T (x̄) is PSC (k) modulo V iff T (x̄) is PSC var(k) modulo V .

In other words, Hypothesis 4.19 states that if a theory T is PSC (k) modulo V , then every model of V ∪T

contains a distinguished k-crux. We now formally state the central result of this subsection.

Theorem 4.20. Given theories V and T (x̄), suppose T (x̄) is PSC var(k) modulo V . Then T (x̄) is equivalent 
modulo V to a theory of Σ0

2 formulae, all of whose free variables are among x̄, and all of which have k
existential quantifiers.

Remark 4.21. It follows from Theorem 4.20 that if T (x̄) is PSC (k) modulo V , then assuming Hypothesis 4.19
holds, T (x̄) is equivalent modulo V to a theory of Σ0

2 formulae, all of whose free variables are among x̄, and 
all of which have k existential quantifiers. This gives us a conditional refinement of Theorem 4.5 seen in the 
previous subsection.

We devote the rest of this section to proving Theorem 4.20. We first introduce some notation and 
terminology. These are adapted versions of similar notation and terminology introduced in [9] and [10]. 
Given a class F of formulae and k ≥ 0, denote by 

[
∃k

∧]
F the class of infinitary formulae Φ(x̄) of the form 

∃y1 . . .∃yk
∧

i∈I ψi(y1, . . . , yk, ̄x) where I is an index set (of arbitrary cardinality) and for each i ∈ I, ψi is 
a formula of F , whose free variables are among y1, . . . , yk, ̄x. Let [∃∗

∧
]F =

⋃
k≥0

[
∃k

∧]
F . Observe that 

F ⊆ [∃∗
∧

]F . For each j ∈ N, let [∃∗
∧

]j F = [∃∗
∧

] [∃∗
∧

]j−1 F , where [∃∗
∧

]0 F = F . Let [∃∗
∧

]∗ F =⋃
j≥0 [∃∗

∧
]j F . Finally, let [

∨
]F denote arbitrary disjunctions of formulae of F . It is easy to see that 

F ⊆ [
∨

]F .
Let Φ(x̄) be a formula of [

∨
] [∃∗

∧
]∗ FO, where FO denotes the class of all first order formulae. We define 

below, the set A(Φ)(x̄) of finite approximations of Φ(x̄). Let ⊆f denote ‘finite subset of’.

1. If Φ(x̄) ∈ FO, then A(Φ)(x̄) = {Φ(x̄)}.
2. If Φ(x̄) = ∃kȳ

∧
i∈I Ψi(x̄, ȳ) for k ≥ 0 and some index set I, then A(Φ)(x̄) = {∃kȳ

∧
i∈I1

γi(x̄, ȳ) | γi(x̄, ȳ)
∈ A(Ψi)(x̄, ȳ), I1 ⊆f I}.

3. If Φ(x̄) =
∨

i∈I Ψi(x̄), then A(Φ)(x̄) = {
∨

i∈I1
γi(x̄) | γi(x̄) ∈ A(Ψi)(x̄), I1 ⊆f I}.

Our proof of Theorem 4.20 is in two parts. The first part, namely the “going up” part as alluded to in 
the beginning of this subsection, gives a characterization of PSCvar(k) theories in terms of the formulae of 
[
∨

]
[
∃k

∧]
Π0

1, where Π0
1 is, as usual, the class of all prenex FO formulae having only universal quantifiers.

Lemma 4.22. Let V and T (x̄) be given theories. Then T (x̄) is PSC var(k) modulo V iff T (x̄) is equivalent 
modulo V to a formula of [

∨
]
[
∃k

∧]
Π0

1, whose free variables are among x̄.

The second part of the proof of Theorem 4.20, namely the “coming down” part, consists of getting 
FO theories equivalent to the formulae of [

∨
]
[
∃k

∧]
Π0

1, whenever the latter define elementary classes of 
structures. In fact, we show a more general result as we now describe. Given a theory V , we say that a 
formula Φ(x1, . . . , xk) of [

∨
] [∃∗

∧
]∗ FO (over a vocabulary say τ) defines an elementary class modulo V

if the sentence (over the vocabulary τk) obtained by substituting fresh and distinct constants c1, . . . , ck
for x1, . . . , xk in Φ(x1, . . . , xk), defines an elementary class (of τk-structures) modulo V . The result below 
characterizes formulae of [

∨
] [∃∗

∧
]∗ FO that define elementary classes, in terms of the finite approximations 

of these formulae.
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Proposition 4.23. Let Φ(x̄) be a formula of [
∨

] [∃∗
∧

]∗ FO and V be a given theory. Then Φ(x̄) defines an 
elementary class modulo V iff Φ(x̄) is equivalent modulo V to a countable subset of A(Φ)(x̄).

The above results prove Theorem 4.20 as follows.

Proof of Theorem 4.20. For any formula Φ(x̄) of [
∨

]
[
∃k

∧]
Π0

1, each formula of the set A(Φ)(x̄) can be 
seen to be equivalent to an ∃k∀∗ formula whose free variables are among x̄. The result then follows from 
Lemma 4.22 and Proposition 4.23. �

Before we provide the proofs of Lemma 4.22 and Proposition 4.23, we state the following compactness 
result for formulae of [∃∗

∧
]∗ FO, that we prove enroute proving Proposition 4.23.

Lemma 4.24. Let Φ(x̄) be a formula of [∃∗
∧

]∗ FO. If every formula of A(Φ)(x̄) is satisfiable modulo a 
theory V , then Φ(x̄) is satisfiable modulo V .

Observe that the standard compactness theorem for FO is a special case of the above result: Given an 
FO theory T (x̄), let Φ(x̄) be the formula of [∃∗

∧
]∗ FO given by Φ(x̄) =

∧
T (x̄). Then every formula of 

A(Φ)(x̄) is equivalent to a finite subset of T (x̄) and vice-versa.

Remark 4.25. The formulas of [∃∗
∧

]∗ FO are special kinds of “conjunctive formulas”, where the latter are as 
defined in [10]. The paper [10] gives a generalization of the compactness theorem by proving a compactness 
result for conjunctive formulas, whose statement is similar to that of Lemma 4.24. However, Lemma 4.24 does 
not follow from this result of [10] because the set of finite approximations of sentences Φ(x̄) of [∃∗

∧
]∗ FO, 

as defined in [10], is semantically strictly larger than the set A(Φ)(x̄) that we have defined. Further, the 
techniques that we use in proving Lemma 4.24 are much different from those used in [10] for proving the 
compactness result for conjunctive formulas.

In the remainder of this subsection, we give proofs for Lemmas 4.22 and 4.24, and Proposition 4.23. 
For Lemma 4.22 and Proposition 4.23, it suffices to give the proofs only for theories/formulae without free 
variables. For Lemma 4.24, we give the proof for formulae with free variables, since the proof is by induction 
on the structure of the formulae.

Proof of Lemma 4.22. If: Let T be equivalent modulo V to the sentence Φ =
∨

i∈I ∃kȳi
∧

Yi(ȳi), where I is 
an index set and for each i ∈ I, Yi is a set of Π0

1 formulae, all of whose free variables are among ȳi. Then 
given a model A of V ∪T , there exist i ∈ I and ā in A such that (A, ̄a) |=

∧
Yi(ȳi). Let A+ be a λ-saturated 

elementary extension of A, for some λ ≥ ω. Then (A+, ̄a) |=
∧
Yi(ȳi). Whence for each B ⊆ A+ such that 

B contains ā, (B, ̄a) |=
∧
Yi(ȳi), and hence B |= Φ. Since Φ is equivalent to T modulo V , we have ā as a 

distinguished k-crux of A.
Only If: Suppose T is PSC var(k) modulo V . Given a model A of V ∪ T , let Dist-k-cruxes(A) be the 

(non-empty) set of all distinguished k-cruxes of A. Consider the sentence Φ =
∨

A|=V ∪T, ā∈Dist-k-cruxes(A) ∃kx̄∧
tpΠ,A,ā(x̄), where tpΠ,A,ā(x̄) is the Π0

1-type of ā in A. We show that T is equivalent to Φ modulo V . That 
T implies Φ modulo V is obvious from the definition of Φ. Towards the converse, suppose B |= {Φ} ∪ V . 
Then for some model A of V ∪ T , some distinguished k-crux ā of A, and for some k-tuple b̄ of B, we have 
(B, ̄b) |= tpΠ,A,ā(x̄). By Remark 4.14, tpΠ,A,ā(x̄) determines a k-crux, whence B |= T . �

To prove Lemma 4.24 and Proposition 4.23, we need the auxiliary lemmas below.

Lemma 4.26. For j ∈ N, let T (x̄) be a set of formulae of [∃∗
∧

]j FO, all of whose free variables are among x̄. 
If every finite subset of T (x̄) is satisfiable modulo a theory V , then T (x̄) is satisfiable modulo V .
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Proof. We prove the statement by induction on j. The base case of j = 0 is the standard compactness 
theorem. As induction hypothesis, suppose the statement is true for j. For the inductive step, consider a 
set T (x̄) = {Φi(x̄) | i ∈ I} of [∃∗

∧
]j+1 FO formulae, all of whose free variables are among x̄, and suppose 

every finite subset of T (x̄) is satisfiable modulo V . Let Φi(x̄) = ∃ȳi
∧

Ti(x̄, ȳi) where Ti(x̄, ȳi) is a set of 
formulae of [∃∗

∧
]j FO. Assume for i, j ∈ I and i �= j, that ȳi and ȳj have no common variables. We show 

that the set Y of [∃∗
∧

]j FO formulae given by Y =
⋃

i∈I Ti is satisfiable modulo V ; then so is T (x̄).
By the induction hypothesis, it suffices to show that every finite subset Z of Y is satisfiable modulo V . 

Let Z(x̄, ȳi1 , . . . , ȳin) =
⋃r=n

r=1 Zr(x̄, ȳir ), where n > 0, Zr(x̄, ȳir ) ⊆f Tir(x̄, ȳir ) and ir ∈ I, for each r ∈
{1, . . . , n}. The subset {Φir(x̄) | r ∈ {1, . . . , n}} of T (x̄) is satisfiable modulo V by assumption, whence for 
some model A of V , and interpretations ā of x̄ and b̄ir of ȳir , we have that 

⋃r=n
r=1 Tir(x̄, ȳir ) is satisfied in 

(A, ̄a, ̄bi1 , . . . , ̄bin); then (A, ̄a, ̄bi1 , . . . , ̄bin) |= Z(x̄, ȳi1 , . . . , ȳin). �
Lemma 4.27. Let Φ(x̄) be a formula of [∃∗

∧
]∗ FO. If (A, ̄a) |= Φ(x̄), then (A, ̄a) |= ξ(x̄) for every formula 

ξ(x̄) of A(Φ)(x̄).

Proof. The proof is by induction. The statement is trivial for formulae of FO = [∃∗
∧

]0 FO. Assume the 
statement holds for [∃∗

∧
]j FO formulae. Consider an [∃∗

∧
]j+1 FO formula Φ(x̄) = ∃nȳ

∧
i∈I Ψi(x̄, ȳ), where 

Ψi(x̄, ȳ) ∈ [∃∗
∧

]j FO for each i ∈ I. Consider a formula ξ(x̄) of A(Φ)(x̄); then ξ(x̄) = ∃nȳ
∧

i∈I1
γi(x̄, ȳ), 

for some I1 ⊆f I and γi(x̄, ȳ) ∈ A(Ψi)(x̄, ȳ) for each i ∈ I1. Since (A, ̄a) |= Φ(x̄), there is an n-tuple b̄ from 
A such that (A, ̄a, ̄b) |= Ψi(x̄, ȳ) for each i ∈ I1. By induction hypothesis, (A, ̄a, ̄b) |= γi(x̄, ȳ) for each i ∈ I1; 
then (A, ̄a) |= ξ(x̄). �
Proof of Lemma 4.24. The proof proceeds by induction. The statement trivially holds for formulae of 
FO = [∃∗

∧
]0 FO. Assume the statement is true for formulae of [∃∗

∧
]j FO. Consider a formula Φ(x̄) of 

[∃∗
∧

]j+1 FO given by Φ(x̄) = ∃ȳ
∧

i∈I Ψi(x̄, ȳ), where Ψi(x̄, ȳ) is a formula of [∃∗
∧

]j FO for each i ∈ I. We 
show that every finite subset of T (x̄, ȳ) = {Ψi(x̄, ȳ) | i ∈ I} is satisfiable modulo V . Then by Lemma 4.26, 
T (x̄, ȳ) is satisfiable modulo V ; whence so is Φ(x̄).

Let I1 be a finite subset of I. For i ∈ I1, consider the formula Ψi(x̄, ȳ) of T (x̄, ȳ); it is given by Ψi(x̄, ȳ) =
∃z̄i

∧
Zi(x̄, ȳ, ̄zi) where Zi(x̄, ȳ, ̄zi) is a set of formulas of [∃∗

∧
]j−1 FO. Let z̄ = (z̄i)i∈I1 be the tuple of all 

the variables of the z̄is, for i ranging over I1. Assume without loss of generality that for i1, i2 ∈ I such 
that i1 �= i2, none of the variables of z̄i1 appear in Ψi2 . Consider the formula Ψ(x̄, ȳ) of [∃∗

∧
]j FO given 

by Ψ(x̄, ȳ) = ∃z̄
∧(⋃

i∈I1
Zi(x̄, ȳ, ̄zi)

)
. It is easy to verify that Ψ(x̄, ȳ) is equivalent (over all structures) 

to {Ψi(x̄, ȳ) | i ∈ I1}. We now show that the latter is satisfiable modulo V by showing that the former 
is satisfiable modulo V – this in turn is done by showing that every formula in A(Ψ)(x̄, ȳ) is satisfiable 
modulo V , and then applying the induction hypothesis mentioned at the outset.

Let γ(x̄, ȳ) be an arbitrary formula of A(Ψ)(x̄, ȳ). Then γ(x̄, ȳ) is of the form ∃z̄
∧

i∈I2

∧
l∈{1,...,ni}

αi,l(x̄, ȳ, ̄zi), where I2 ⊆ I1, and for each i ∈ I2, we have ni ≥ 1, αi,l(x̄, ȳ, ̄zi) ∈ A(βi,l)(x̄, ȳ, ̄zi), and 
{βi,1(x̄, ȳ, ̄zi), . . ., βi,ni

(x̄, ȳ, ̄zi)} ⊆f Zi(x̄, ȳ, ̄zi). It is easy to see that γ(x̄, ȳ) is equivalent to the formula ∧
i∈I2

γi(x̄, ȳ) where γi(x̄, ȳ) = ∃z̄i
∧

l∈{1,...,ni} αi,l(x̄, ȳ, ̄zi). Observe now that γi(x̄, ȳ) ∈ A(Ψi)(x̄, ȳ), whence 
∃ȳ

∧
i∈I2

γi(x̄, ȳ) ∈ A(Φ)(x̄). By assumption, every formula of A(Φ)(x̄) is satisfiable modulo V ; then so are 
∃ȳ

∧
i∈I2

γi(x̄, ȳ) and γ(x̄, ȳ). �
Proof of Proposition 4.23. It suffices to show just the ‘Only if’ direction of the result. Hence, consider a 
sentence Φ of [

∨
] [∃∗

∧
]∗ FO given by Φ =

∨
i∈I Ψi where Ψi ∈ [∃∗

∧
]∗ FO. Let B =

∏
i∈I A(Ψi) where 

∏

denotes Cartesian product. We now show the following equivalences modulo V :

Φ ↔
∨ ∧

γ (1)

i∈I γ∈A(Ψi)
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↔
∧

(γi) ∈ B

∨

i∈I

γi (2)

In equivalence Eq. (2) above, (γi) denotes a sequence in B. Let Pfin(I) be the set of all finite subsets of I. 
We finally show the existence of a function g : B → Pfin(I) that gives the following equivalence

Φ ↔
∧

(γi)∈B

∨

j∈g((γi))

γj (3)

Observe that each disjunction in the RHS of Eq. (3) is a sentence of A(Φ). Observe also that instead of 
ranging over all of B in the RHS of Eq. (3) above, we can range over only a countable subset of B, since 
the number of FO sentences over a finite vocabulary is countable. We now show the above equivalences to 
complete the proof. The equivalence Eq. (2) is obtained by applying the standard distributivity laws for 
conjunctions and disjunctions, to the sentence in the RHS of Eq. (1).

Proof of Eq. (1): Let Γ =
∨

i∈I

∧
γ∈A(Ψi) γ. Let A be a model of V such that A |= Φ. Then A |= Ψi

for some i ∈ I. By Lemma 4.27, we have A |= A(Ψi), whence A |= Γ. Thus Φ implies Γ modulo V . 
Towards the converse, let A be a model of V such that A |= Γ. Then A |= A(Ψi) for some i ∈ I. Let 
Ψ =

∧(
th(A) ∪ {Ψi}

)
, where th(A) denotes the theory of A. It is easy to see that A |= A(Ψ) because any 

sentence γ in A(Ψ) is given by either γ =
∧

Z or γ = γi ∧
∧

Z, where Z ⊆f th(A) and γi ∈ A(Ψi). Also 
observe that Ψ ∈ [∃∗

∧
]∗ FO; then since every sentence of A(Ψ) is satisfiable modulo V , it follows from 

Lemma 4.24 that Ψ is satisfied in a model of V , say B. Then (i) B ≡ A and (ii) B |= Ψi whence B |= Φ. 
Since Φ defines an elementary class modulo V , we have A |= Φ.

Proof of Eq. (3): We show the following result, call it (‡): If T, S and V are FO theories such that 
T →

∨
S modulo V , then T implies 

∨
S′ modulo V for some finite subset S′ of S. Then Eq. (3) follows 

from Eq. (2) as follows. By Eq. (2), we have Φ →
∨

i∈I γi modulo V for each sequence (γi) of B (recall 
that B =

∏
i∈I A(Ψi)). Then by (‡), Φ →

∨
i∈I1

γi for some I1 ⊆f I. Defining g((γi)) = I1, we get the 
forward direction of Eq. (3). The backward direction of Eq. (3) is trivial from Eq. (2) and the fact that ∨

i∈I1
γi →

∨
i∈I γi. We now show (‡).

Since T →
∨
S modulo V , we have that T∪{¬α | α ∈ S} is unsatisfiable modulo V . Then by compactness 

theorem, T ∪ {¬α | α ∈ S′} is unsatisfiable modulo V , for some finite subset S′ of S. Whereby, T →
∨
S′

modulo V . �
5. Preservation properties in terms of finite cruxes and finitary covers

In this section, we present natural generalizations of the PSC(k) and PCE(k) properties in which, rather 
than insisting on bounded sized cruxes and bounded arity covers, we allow finite sized cruxes and finitary 
covers; the sizes of the cruxes and the arities of the covers are allowed to be unbounded across the structures 
of the class considered.

We first define the notion of finitary covered extensions.

Definition 5.1. A structure A is called a finitary covered extension of a collection R of structures if (i) A is 
an extension of R, (ii) for each finite subset C of the universe of A, there is a structure in R containing C. 
We call R a finitary cover of A.

Observe that, in contrast to k-ary covered extensions, if A is a finitary covered extension of R, then R
is necessarily non-empty. Further, A must be unique such since all predicates and function symbols have 
finite arity.

Definition 5.2. Let U be a class of structures and S be a subclass of U .
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1. We say S is preserved under substructures modulo finite cruxes over U , abbreviated S is PSC f over U , if 
for each structure A ∈ S, there is a finite subset C of the universe of A such that, if B ⊆ A, B contains 
C and B ∈ U , then B ∈ S. The set C is called a crux (or a finite crux) of A w.r.t. S over U .

2. We say S is preserved under finitary covered extensions over U , abbreviated S is PCEf over U , if for 
every collection R of structures of S, if A is a finitary covered extension of R and A ∈ U , then A ∈ S.

If φ(x̄) and T (x̄) are respectively a formula and a theory, each of whose free variables are among x̄, 
then given a theory V , the notions of ‘φ(x̄) is PSC f (resp. PCEf ) modulo V ’ and ‘T (x̄) is PSC f (resp. 
PCEf ) modulo V ’ are defined similar to corresponding notions for PSC (k) (resp. PCE(k)). Analogous to 
the results in Sections 3 and 4, we have the following results for PSC f and PCEf . The proofs are similar 
to the corresponding results for PSC (k) and PCE(k), and are hence skipped.

Lemma 5.3 (PSC f–PCEf duality). Let U be a class of structures, S be a subclass of U and S be the 
complement of S in U . Then S is PSC f over U iff S is PCEf over U . In particular, if U is defined by a 
theory V , then a sentence φ is PSC f modulo V iff ¬φ is PCEf modulo V .

Theorem 5.4. Let V and T (x̄) be theories.

1. T (x̄) is PCEf modulo V iff T (x̄) is equivalent modulo V to a theory of Π0
2 formulae, all of whose free 

variables are among x̄.
2. If T (x̄) is PSC f modulo V , then T (x̄) is equivalent modulo V to a theory of Σ0

2 formulae, all of whose 
free variables are among x̄. However, the converse does not hold. There exist theories V and T such 
that (i) each sentence of T is a Σ0

2 sentence having exactly one existential quantifier, and (ii) T is not 
PSC f modulo V .

Corollary 5.5. Given a theory V , each of the following holds.

1. A formula φ(x̄) is PSC f modulo V iff φ(x̄) is equivalent modulo V to a Σ0
2 formula whose free variables 

are among x̄.
2. A formula φ(x̄) is PCEf modulo V iff φ(x̄) is equivalent modulo V to a Π0

2 formula whose free variables 
are among x̄.

5.1. PSC f (resp. PCEf ) vis-à-vis PSC (resp. PCE)

Corollaries 4.4, 4.6 and 5.5 yield the following result that is not obvious from the definitions of the 
properties concerned.

Corollary 5.6. A sentence is PSC f (resp. PCEf ) modulo a theory V iff it is PSC (resp. PCE) modulo V .

Thus, given a sentence φ that is PSC f (resp. PCEf ), there exists k ∈ N such that φ is PSC (k) (resp. 
PCE(k)). This raises the question: is k computable? It turns out that, in general, k cannot be bounded by 
any recursive function of the length of φ. We present a short discussion on this in Appendix A.

While every PCE theory is trivially also a PCEf theory, the following result, in contrast to Corollary 5.6, 
shows that PCEf theories are, in general, strictly more expressive than PCE theories. We however do not 
know if PSC f theories are more expressive than PSC theories.

Proposition 5.7. There are theories V and T such that T is PCEf modulo V but T is not PCE modulo V .



A. Sankaran et al. / Annals of Pure and Applied Logic 167 (2016) 189–210 207
Proof. Let V be the theory defining the class of all undirected graphs. Let T be a Π0
1 theory over graphs 

asserting that there is no cycle of length k for any k ∈ N. Then T defines the class S of all acyclic graphs, 
and is PCEf modulo V by Theorem 5.4(1). Suppose T is PCE modulo V , whence T is PCE(k) modulo V
for some k ∈ N. Then S is PCE(k) modulo the class of models of V . By Lemma 3.9, S (the complement 
of S) is PSC (k) modulo the class of models of V . Now consider a cycle G of length k+ 1. Clearly, G is in S
but every proper substructure of G is in S. This contradicts our earlier inference that S is PSC (k) modulo 
the class of models of V . �
6. Comparisons with existing notions and results in literature

Corollaries 4.4 and 4.6 provide parameterized generalizations of the extensional and substructural forms 
respectively, of the Łoś–Tarski theorem for sentences over arbitrary finite vocabularies. These can therefore 
be collectively regarded as the generalized Łoś–Tarski theorem for sentences. This generalization can also 
be seen as providing new semantic characterizations of the Π0

2 and Σ0
2 prefix classes of FO sentences. 

Likewise, Theorems 4.1 and 5.4(1) provide new semantic characterizations of theories of ∀k∃∗ sentences and 
theories of Π0

2 sentences respectively. There are other characterizations of the Π0
2 and Σ0

2 prefix classes in the 
literature via preservation under unions of ascending chains, preservation under intersections of descending 
chains and preservation under Keisler’s 1-sandwiches [3]. However none of these characterizations relate 
the count of quantifiers to any model-theoretic properties. Our results therefore provide sharper semantic 
characterizations than those in the literature.

Furthermore, our notions of PSC(k) and PCE(k) are combinatorial and finitary in nature, and remain 
non-trivial over finite structures as well. This is in contrast to all of the aforementioned notions from the 
literature, that are trivially true for all sentences over any class of finite structures. This motivates the 
following question: Are there interesting classes of finite structures over which the generalized Łoś–Tarski
theorem for sentences, holds? Recently, we answered this question affirmatively in [18]. Specifically, we iden-
tified a logic-based combinatorial property of classes of finite structures that entails an effective version of 
the generalized Łoś–Tarski theorem for sentences. We showed that this combinatorial property is enjoyed 
by various interesting classes of finite structures like words, trees (represented as partial orders), structures 
of bounded tree-depth, grids of bounded dimension, various classes of co-graphs like all co-graphs, com-
plete graphs, complete n-partite graphs for each natural number n, threshold graphs, etc. The generalized 
Łoś–Tarski theorem then holds (in effective form) over all these classes.

In summary, the notions of PSC (k) and PCE(k) have not only enabled obtaining new and sharper 
preservation theorems in classical model theory, they have also been shown to be useful in obtaining new 
preservation theorems in the context of finite model theory.

7. Conclusion and future work

In this paper, we presented dual parameterized preservation properties that generalize the classical prop-
erties of preservation under substructures and preservation under extensions. We syntactically characterized 
sentences having these properties, obtaining as a consequence, a parameterized generalization of the Łoś–
Tarski theorem for sentences. Our results provide semantic characterizations of the ∃k∀∗ and ∀k∃∗ prefix 
classes of FO sentences, for each natural number k, and are thus sharper than existing characterizations in 
the literature, of the Σ0

2 and Π0
2 prefix classes of FO sentences.

The following questions naturally arise from the current work, and are proposed as a part of future work.
1. We would like to investigate what syntactic subclasses of FO theories correspond exactly to PSC(k) and 

PSC f theories. As Theorems 4.5 and 5.4(2) show, these syntactic classes must semantically be subclasses of 
Σ0

2 theories. For PSC (k) theories, in addition to verifying whether Hypothesis 4.19 is true, we would further 
like to investigate what syntactic subclass of theories of ∃k∀∗ sentences characterizes PSC (k) theories, 
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assuming Hypothesis 4.19 holds. A technique to identify the latter syntactic subclass is to examine the 
syntactic properties of the FO theories given by Proposition 4.23, and exploit the fact that these theories 
are obtained from the finite approximations of the infinitary sentences of [

∨
]
[
∃k

∧]
Π0

1.
2. As “converses” to the investigations above, and as analogues of the semantic characterizations of Π0

2
theories and theories of ∀k∃∗ sentences by PCEf and PCE(k) respectively, we would like to semantically 
characterize Σ0

2 theories and theories of ∃k∀∗ sentences, in terms of properties akin to (though not the same 
as) PSC f and PSC (k).

3. It is conceivable that many semantic properties of FO theories have natural and intuitive descrip-
tions/characterizations in infinitary logics (Lemma 4.22 gives one such example). Then, results like Propo-
sition 4.23 can be seen as “compilers” (in the sense of compilers used in computer science), in that they give 
a means of translating a “high level” description – via infinitary sentences that are known to be equivalent 
to FO theories – to an equivalent “low level” description – via FO theories. The latter FO theories are 
obtained from appropriately defined finite approximations of the infinitary sentences. It would therefore 
be useful to investigate other infinitary logics and their fragments for which such compiler-results can be 
established. An interesting logic to investigate in this regard would be Lω1,ω, which is well-known to enjoy 
excellent model-theoretic properties despite compactness theorem not holding of it [11].

4. The results of this paper give characterizations of Σ0
2 and Π0

2 sentences in which the number of quanti-
fiers in the leading block is given. As natural generalizations of these results, we can ask for characterizations 
of Σ0

n and Π0
n sentences for each n ≥ 2, where the numbers of quantifiers in all the n blocks are given, and 

further extend these characterizations to theories. It may be noted that the results in the literature charac-
terize Σ0

n and Π0
n theories as a whole and do not provide the finer characterizations suggested here.

5. The results of Section 5.1 have been used to obtain new proofs of known inexpressibility results in 
FO [16]. We would like to investigate more such applications of our results.
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Appendix A

Corollary 5.6 tells that given a sentence φ that is PSC f (resp. PCEf ) modulo a theory V , there exists 
k ∈ N such that φ is PSC (k) (resp. PCE(k)) modulo V . This raises the question: is k computable? The 
following proposition answers the aforesaid question in the negative. Below, a relational sentence is a sentence 
over a vocabulary that does not contain any function symbols. Let the length of a sentence φ be denoted 
by |φ|.

Proposition A.1. Let V be the empty theory. For every recursive function ν : N → N, we have the following:

1. There is a relational Π0
2 sentence φ that is PSC f modulo V but that is not PSC (k) modulo V for any 

k ≤ ν(|φ|).
2. There is a relational Σ0

2 sentence φ that is PCEf modulo V but that is not PCE(k) modulo V for any 
k ≤ ν(|φ|).
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Towards the proof of the above proposition, we first present a recent unpublished result of Rossman [13].

Theorem A.2 (Rossman, 2012). Let V be the empty theory. For every recursive function ν : N → N, there 
exists a relational Σ0

2 sentence φ that is PS modulo V , and for which every equivalent Π0
1 sentence has 

length at least ν(|φ|) + 1.

Theorem A.2 gives a non-recursive lower bound on the length of Π0
1 sentences equivalent to sentences 

that are PS (in terms of the lengths of the latter sentences). This strengthens the non-elementary lower 
bound proved in [5].

Corollary A.3. Let V be the empty theory. For every recursive function ν : N → N, there exists a relational 
Σ0

2 sentence φ that is PS modulo V , and for which every equivalent Π0
1 sentence has at least ν(|φ|) + 1

universal variables.

Proof. We show below that there is a monotone recursive function ρ : N → N such that if ξ is a Π0
1 sentence 

with n variables, then the shortest (in terms of length) Π0
1 sentence equivalent to ξ has length at most 

ρ(n). That would prove this corollary as follows. Suppose there is a recursive function ν : N → N such that 
for each relational Σ0

2 sentence ψ that is PS modulo V , there is an equivalent Π0
1 sentence having at most 

ν(|ψ|) universal variables. Then consider the recursive function θ : N → N given by θ(n) = ρ(ν(n)) and let 
φ be the relational Σ0

2 sentence given by Theorem A.2 for the function θ. Then φ is PS modulo V and the 
shortest Π0

1 sentence equivalent to φ has length > θ(|φ|). By the assumption about ν above, there is a Π0
1

sentence equivalent to φ having at most ν(|φ|) universal variables. Whence there is a Π0
1 sentence equivalent 

to φ whose length is at most ρ(ν|φ|) = θ(|φ|) – a contradiction.
Let ξ be a universal sentence given by ξ = ∀nz̄β(z̄). Let the vocabulary of ξ be τ and the maximum arity 

of any predicate of τ be q. Then the number k of atomic formulae of τ having variables from z̄ is at most 
|τ | · nq. It follows that the length r of the disjunctive normal form, say α, of β satisfies r ≤ (d · k · 2k) for 
some constant d ≥ 1. Then ξ is equivalent to the sentence γ = ∀nz̄α(z̄); the size of γ is at most e · (n + r)
for some constant e ≥ 1. Since k and r are bounded by monotone recursive functions of n, so is the length 
of γ. �

Using Corollary A.3, we can prove Proposition A.1 as follows.

Proof of Proposition A.1. We give the proof for Part 1. The negation of the sentence φ showing Part 1
proves Part 2. Also, we omit the mention of V for the sake of readability.

Suppose there is a recursive function ν : N → N such that if ξ is a relational Π0
2 sentence that is PSC f , 

then ξ is PSC (k) for some k ≤ ν(|ξ|). In other words, for ξ as mentioned, every model of ξ has a crux of size 
at most ν(|ξ|). Consider the recursive function ρ : N → N given by ρ(n) = ν(n + 1). Then, for the function 
ρ, consider the relational Σ0

2 sentence φ given by Corollary A.3. The sentence φ is PS and every Π0
1 sentence 

equivalent to it has > ρ(|φ|) number of universal variables. Now the Π0
2 sentence ψ given by ψ = ¬φ is 

equivalent to a Σ0
1 sentence. Since Σ0

1 sentences are PSC , and hence PSC f , it follows that ψ is PSC f . Now, 
by our assumption about ν above, every model of ψ has a crux of size at most ν(|ψ|) = ν(|φ| + 1) = ρ(|φ|). 
Then all minimal models of ψ have size at most ρ(|φ|) + q, where q is the number of constant symbols 
in the vocabulary of φ. Using the fact that ψ is preserved under extensions, it is easy to construct a Σ0

1
sentence having ρ(|φ|) number of existential variables, that is equivalent to ψ. Whereby φ is equivalent to 
a Π0

1 sentence having ρ(|φ|) number of universal variables – a contradiction. �
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