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Abstract. We investigate a model-theoretic property that generalizes the classi-
cal notion of preservation under substructures. We call this property preservation
under substructures modulo bounded cores, and present a syntactic characteri-
zation via Σ0

2 sentences for properties of arbitrary structures definable by FO
sentences. Towards a sharper characterization, we conjecture that the count of
existential quantifiers in the Σ0

2 sentence equals the size of the smallest bounded
core. We show that this conjecture holds for special fragments of FO and also
over special classes of structures. We present a (not FO-definable) class of finite
structures for which the conjecture fails, but for which the classical Łoś-Tarski
preservation theorem holds. As a fallout of our studies, we obtain combinatorial
proofs of the Łoś-Tarski theorem for some of the aforementioned cases.

Keywords: Model theory, First Order logic, Łoś-Tarski preservation theorem.

1 Introduction

Preservation theorems have traditionally been an important area of study in model the-
ory. These theorems provide syntactic characterizations of semantic properties that are
preserved under model-theoretic operations. One of the earliest preservation theorems
is the Łoś-Tarski theorem, which states that over arbitrary structures, a First Order (FO)
sentence is preserved under taking substructures iff it is equivalent to aΠ0

1 sentence [5].
Subsequently many other preservation theorems were studied, e.g. preservation under
unions of chains, homomorphisms, direct products, etc. With the advent of finite model
theory, the question of whether these theorems hold over finite structures became in-
teresting. It turned out that several preservation theorems fail in the finite [1,7,9]. This
inspired research on preservation theorems over special classes of finite structures, e.g.
those with bounded degree, bounded tree-width etc. These efforts eventually led to some
preservation theorems being “recovered” [2,3]. Among the theorems whose status over
the class of all finite structures was open for long was the homomorphism preservation
theorem. This was recently resolved in [10], which showed that the theorem survives
in the finite.

In this paper, we look at a generalization of the preservation under substructures
property that we call preservation under substructures modulo bounded cores. In
Section 2, we show that for FO sentences, this property has a syntactic characterization
in terms of Σ0

2 sentences over arbitrary structures. Towards a sharper characterization,
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we conjecture that for core sizes bounded by a number B, there is a syntactic charac-
terization in terms ofΣ0

2 sentences that use at most B existential quantifiers. In Section
3, we discuss how the notion of relativization can be used to prove the conjecture in
special cases. We present our studies of the conjecture for special classes of FO and
over special classes of structures in Sections 4 and 5. As a fallout of our studies, we
obtain combinatorial proofs of the classical Łoś-Tarski theorem for some of the afore-
said special cases, and also obtain semantic characterizations of natural subclasses of
the Δ0

2 fragment of FO. We conclude with questions for future work in Section 6.
We assume that the reader is familiar with standard notation and terminology used in

the syntax and semantics of FO (see [8]). A vocabulary τ is a set of predicate, function
and constant symbols. In this paper, we will restrict ourselves to finite vocabularies
only. A relational vocabulary has only predicate and constant symbols, and a purely
relational vocabulary has only predicate symbols. We denote by FO(τ), the set of all
FO formulae over vocabulary τ . A sequence (x1, . . . , xk) of variables is denoted by x̄.
We will abbreviate a block of quantifiers of the form Qx1 . . . Qxk by Qx̄, where Q ∈
{∀, ∃}. ByΣ0

k (resp.Π0
k ), we mean FO sentences in Prenex Normal Form (PNF) over an

arbitrary vocabulary, whose quantifier prefix begins with a ∃ (resp. ∀) and consists of k−
1 alternations of quantifiers. We use the standard notions of τ -structures, substructures
and extensions, as in [8]. Given τ−structures M and N , we denote by M ⊆ N that
M is a substructure of N (or N is an extension of M ). Given M and a subset S (resp.
a tuple ā of elements) of its universe, we denote by M(S) (resp. M(ā)) the smallest
substructure (under set inclusion ordering of the universe) of M containing S (resp.
underlying set of ā) and call it the substructure of M induced by S (resp. underlying
set of ā). Finally, by size of M , we mean the cardinality of its universe and denote it by
|M |. As a final note of convention, whenever we talk of FO definability in the paper, we
mean definability via FO sentences (as opposed to theories), unless stated otherwise.

2 Preservation under Substructures Modulo Cores

We denote by PS the collection of all classes of structures, in any vocabulary, that
are closed under taking substructures. This includes classes that are not definable in
any logic. We let PS denote the collection of FO definable classes in PS. We identify
classes in PS with their defining FO sentences and will henceforth treat PS as a set of
sentences. We now consider a natural generalization of PS. Our discussion will concern
arbitrary (finite) vocabularies and arbitrary structures over them.

2.1 The Case of Finite Cores

Definition 1 (Preservation under substructures modulo finite cores)
A class of structures S is said to be preserved under substructures modulo a finite core
(denoted S ∈ PSCf ), if for every structure M ∈ S, there exists a finite subset C of
elements of M such that if M1 ⊆ M and M1 contains C, then M1 ∈ S. The set C is
called a core of M w.r.t. S. If S is clear from context, we will call C as a core of M .
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Note that any finite subset of the universe of M containing a core is also a core of M .
Also, there can be multiple cores of M having the same size. A minimal core of M is a
core, no subset of which is a core of M .

We will use PSCf to denote the collection of all classes preserved under substruc-
tures modulo a finite core. Similarly, we will use PSCf to denote the collection of
FO definable classes in PSCf . We identify classes in PSCf with their defining FO
sentences, and will henceforth treat PSCf as a set of sentences.

Example 1: Let S be the class of all graphs containing cycles. For any graph in S, the
vertices of any cycle is a core of the graph. Thus S ∈ PSCf .

Note that PS ⊆ PSCf since for any class in PS and for any structure in the class, any
element is a core. However it is easy to check that S in above example is not in PS; so
PSCf strictly generalizes PS. Further, the FO inexpressibility of S shows that PSCf

contains classes not definable in FO.

Example 2: Consider φ = ∃x∀yE(x, y). In any graph satisfying φ, any witness for x
is a core of the graph. Thus φ ∈ PSCf . In fact, one can put a uniform bound of 1 on
the minimal core size for all models of φ.

Again it is easy to see that PS � PSCf . Specifically, the sentence φ in Example 2 is
not in PS. This is because a directed graph with exactly two nodes a and b, and having
all directed edges except the self loop on a models φ but the subgraph induced by a
does not model φ. Hence PS � PSCf . Extending the example above, one can show
that for any sentence ϕ in Σ0

2 , in any model of ϕ, any witness for the ∃ quantifiers in
ϕ forms a core of the model. Hence Σ0

2 ⊆ PSCf . In fact, for any sentence in Σ0
2 ,

the number of ∃ quantifiers serves as a uniform bound on the minimal core size for
all models. Surprisingly, even for an arbitrary φ ∈ PSCf , it is possible to bound the
minimal core size for all models!

Towards the result, we use the notions of chain and union of chain from the literature.
The reader is referred to [5] for the definitions. We denote a chain as M1 ⊆ M2 ⊆ . . .
and its union as

⋃
i≥0Mi. We say that a sentence φ is preserved under unions of chains

if for every chain of models of φ, the union of the chain is also a model of φ. We now
recall the following characterization theorem from the ’60s [5].

Theorem 1. (Chang-Łoś-Suszko) A sentence φ is preserved under unions of chains iff
it is equivalent to a Π0

2 sentence.

Now we have the following theorem.

Theorem 2. A sentence φ ∈ PSCf iff φ is equivalent to a Σ0
2 sentence.

Proof: We infer from Theorem 1 the following equivalences.
φ is equivalent to a Σ2

0 sentence iff
¬φ is equivalent to a Π2

0 sentence iff
∀M1,M2, . . . ((M1 ⊆ M2 ⊆ . . .) ∧ (M =

⋃
i≥1Mi) ∧ ∀i(Mi |= ¬φ)) → M |= ¬φ

iff
∀M1,M2, . . . ((M1 ⊆M2 ⊆ . . .) ∧ (M =

⋃
i≥1Mi) ∧ (M |= φ)) → ∃i(Mi |= φ)
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Assume φ ∈ PSCf . Suppose M1 ⊆M2 ⊆ . . . is a chain, M =
⋃

i≥0Mi and M |= φ.
Then, there exists a finite core C of M . For any a ∈ C, there exists an ordinal ia s.t.
a ∈ Mia (else a would not be in the union M ). Since C is finite, let i = max(ia| a ∈
C). Since ia ≤ i, we have Mia ⊆ Mi; hence a ∈ Mi for all a ∈ C. Thus Mi contains
C. Since C is a core of M and Mi ⊆ M , Mi |= φ by definition of PSCf . By the
equivalences shown above, φ is equivalent to a Σ0

2 sentence. We have seen earlier that
Σ0

2 ⊆ PSCf .

Corollary 1. If φ ∈ PSCf , there exists B ∈ N such that every model of φ has a core
of size at most B.

Proof : Take B to be the number of ∃ quantifiers in the equivalentΣ0
2 sentence.

Given Corollary 1, it is natural to ask if B is computable. In this context, the following
recent (unpublished) result by Rossman [11] is relevant. Let |φ| denote the size of φ.

Theorem 3. (Rossman) There is no recursive function f : N → N such that if φ ∈ PS,
then there is an equivalentΠ0

1 sentence of size at most f(|φ|). The result holds even for
relational vocabularies and further even if PS is replaced with PS ∩Σ0

2 .

Corollary 2. There is no recursive function f : N → N such that if φ ∈ PS, then there
is an equivalent Π0

1 sentence with at most f(|φ|) universal variables. The result holds
even for relational vocabularies and further even if PS is replaced with PS ∩Σ0

2 .

Proof : Let ϕ = ∀nz̄ψ(z̄) be a Π0
1 sentence equivalent to φ where n = f(|φ|). Let

k be the number of atomic formulae in ψ. Since φ and ψ have the same vocabulary,
k ∈ O(|φ| · n|φ|). The size of the Disjunctive Normal Form of ψ is therefore bounded
above by O(k · n · 2k). Hence |ϕ| is a recursive function of |φ| if f is recursive.

Theorem 3 strengthens the non-elementary lower bound given in [6]. Corollary 2 gives
us the following.

Lemma 1. There is no recursive function f : N → N s.t. if φ ∈ PSCf , then every
model of φ has a core of size at most f(|φ|).

Proof : Consider such a function f . For any sentence φ in a relational vocabulary τ s.t.
φ ∈ PS, ¬φ is equivalent to aΣ0

1 sentence by Łoś-Tarski theorem. Hence ¬φ ∈ PSCf .
By assumption about f , the size of minimal models of ¬φ is bounded above by n =
f(|φ|) + k, where k is the number of constants in τ . Therefore, ¬φ is equivalent to an
∃n sentence and hence φ is equivalent to a ∀n sentence. Corollary 2 now forbids n, and
hence f , from being recursive. It is easy to see that the result extends to vocabularies
with functions too (by using functions in a trivial way).

Corollary 1 motivates us to consider sentences with bounded cores since all sentences
in PSCf have bounded cores.
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2.2 The Case of Bounded Cores

We first give a more general definition.

Definition 2 (Preservation under substructures modulo a bounded core). A class of
structures S is said to be preserved under substructures modulo a bounded core (de-
noted S ∈ PSC), if S ∈ PSCf and there exists a natural number B dependent only on
S such that every structure in S has a core of size at most B.

The collection of all such classes is denoted by PSC. Let PSC(B) be the sub-collection
of PSC in which each class has minimal core sizes bounded by B. Then PSC =⋃

B≥0 PSC(B). An easy observation is that PSC(i) ⊆ PSC(j) for i ≤ j. As before,
PSC and each PSC(B) contain non-FO definable classes. As an example, the class of
forests is in PSC(0). Let PSC (resp. PSC(B)) be the FO definable classes in PSC

(resp. PSC(B)). Observe that PSC(0) is exactly PS and PSC =
⋃

B≥0 PSC(B).
Therefore, PSC generalizes PS. Further, the hierarchy in PSC is strict. Consider
φ ∈ PSC(k) given by φ = ∃x1 . . . ∃xk

∧
1≤i<j≤k ¬(xi = xj). Then φ /∈ PSC(l) for

l < k. From Corollary 1, we have

Lemma 2. PSC = PSCf .

As noted earlier, a Σ0
2 sentence φ with B existential quantifiers is in PSCf with min-

imal core size bounded by B. Hence φ ∈ PSC(B). In the other direction, Theorem 2
and Lemma 2 together imply that for a sentence φ ∈ PSC(B), there is an equivalent
Σ0

2 sentence. We can then ask the following sharper question: For φ ∈ PSC(B), is
there an equivalentΣ0

2 sentence having B existential quantifiers?
The remainder of the paper is an account of our studies for a number of special cases

of the above question. Since the answer in all of these cases in which arbitrary structures
were considered turned out positive, we put forth the following conjecture1.

Conjecture 1. A sentence φ ∈ PSC(B) iff it is equivalent to a Σ0
2 sentence with B

existential quantifiers.

3 Revisiting Relativization

For purposes of our discussion in this and in the remaining sections of the paper, we
will assume relational vocabularies (only predicates and constants).

A notion that has proved immensely helpful in proving most of our positive cases
for the conjecture is that of relativization. Informally speaking, given a sentence φ, we
would like to define a formula (with free variables x̄) which asserts that φ is true in the
submodel induced by x̄. The following lemma shows the existence of such a formula.

Lemma 3. If τ is a relational vocabulary, for every FO(τ) sentence φ and variables
x̄ = (x1, . . . , xk), there exists a quantifier-free formula φ|x̄ with free variables x̄ such

1 Post submission of this paper, we have obtained a proof of the conjecture, over arbitary struc-
tures, using non-combinatorial model-theoretic arguments. However, this has not benefited
from the scrutiny of the anonymous reviewers. Details of our proof may be found in [12].
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that the following holds: Let M be a model and ā = (a1, . . . , ak) be a sequence of
elements of M . Then

(M,a1, . . . , ak) |= φ|x̄ iff M({a1, . . . , ak}) |= φ

Proof : Let X = {x1, . . . , xk} and C be the set of constants in τ . First, replace every ∀
quantifier in φ by ¬∃. Then, replace every subformula of φ of the form ∃xχ(x, y1, . . . ,
yk) by

∨
z∈X∪C χ(z, y1, . . . , yk).

We refer to φ|x̄ as ‘φ relativized to x̄’. For clarity of exposition, we will abuse notation
and use φ|{x1,...,xk} to denote φ|x̄ (although x̄ is a sequence and {x1, . . . , xk} is a set),
whenever convenient.

We begin with the following observation.

Lemma 4. Over any given class C of structures in PS, if φ↔ ∀z1 . . . ∀znϕ where ϕ is
quantifier-free, then φ↔ ψ where ψ = ∀z1 . . .∀znφ|{z1,...,zn}.

Proof : It is easy to see that φ → ψ. Let M ∈ C be s.t. M |= ψ. Let ā be an n−tuple
from M . Then, by Lemma 3, M(ā) |= φ. Since C ∈ PS, M(ā) ∈ C so that M(ā) |=
∀z1 . . .∀znϕ. Then M(ā) |= ϕ(ā) and hence M |= ϕ(ā). Then M |= ∀z1 . . . ∀znϕ
and hence M |= φ.

Using Łoś-Tarski theorem and the above lemma, it follows that a sentence φ in PS
has an equivalent universal sentence whose matrix is φ itself relativized to the universal
variables. However we give a proof of this latter fact directly using relativization, and
hence an alternate proof of the Łoś-Tarski theorem. We emphasize that our proof works
only for relational vocabularies (Łoś-Tarski is known to hold for arbitrary vocabular-
ies). This would show that relativization helps us resolve the conjecture for the case of
B = 0.

3.1 A Proof of Łoś-Tarski Theorem Using Relativization

We first introduce some notation. Given a τ−structure M , we denote by τM , the vo-
cabulary obtained by expanding τ with as many constant symbols as the elements of
M - one constant per element. We denote by M the τM structure whose τ−reduct is
M and in which each constant in τM is interpreted as the element of M corresponding
to the constant. It is clear that M uniquely determines M. Finally, D(M) denotes the
diagram of M - the collection of quantifier free τM−sentences true in M.

Theorem 4. (Łoś-Tarski) A FO sentence φ is in PS iff there exists an n ∈ N such that
φ is equivalent to ∀z1 . . . ∀znφ|{z1,...,zn}.

Proof :
Consider a set of sentences Γ = {ξk | k ∈ N, ξk = ∀z1 . . .∀zkφ|{z1,...,zk}}. Observe
that ξk+1 → ξk so that a finite collection of ξks will be equivalent to ξk∗ where k∗ is
the highest index k appearing in the collection. We will show that φ ↔ Γ . Once we
show this, by compactness theorem, φ ↔ Γ1 for some finite subset Γ1 of Γ and by the
preceding observation, φ is equivalent to ξn ∈ Γ1 for some n.
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If M |= φ, then since φ ∈ PS, every substructure of it models φ - in particular, the
substructure induced by any k-elements of M . Then M |= ξk for every k and hence
M |= Γ .

Conversely, suppose M |= Γ . Then every finite substructure of M models φ. Let
M be the τM structure corresponding to M . Consider any finite subset S of the dia-
gram D(M) ofM . Let C be the finite set of constants referred to in S. Clearly M|τ∪C ,
namely the (τ ∪ C)-reduct of M models S since M |= D(M). Then consider the
substructure M1 of M|τ∪C induced by the interpretations of the constants of C - this
satisfies S. Now since C is finite, so is M1. Then the τ−reduct of M1 - a finite sub-
structure of M models φ.

Thus S ∪ {φ} is satisfiable by M1. Since S was arbitrary, every finite subset of
D(M) ∪ {φ} is satisfiable so that by compactness, D(M) ∪ {φ} is satisfiable by some
structure say N . Then the τ−reduct N of N is s.t. (i) M is embeddable in N and (ii)
N |= φ. Since φ ∈ PS, the embedding of M in N models φ and hence M |= φ.

The above proof shows that for φ ∈ PS, there is an equivalent universal sentence whose
matrix is φ itself, relativized to the universal variables. In fact, by Lemma 4, there is an
optimal (in terms of the number of universal variables) such sentence.

An observation from the proof of Theorem 4 is that, the Łoś-Tarski theorem is true
over any class of structures satisfying compactness - hence in particular the class of
structures definable by a FO theory (indeed this result is known). But there are classes
of structures which are not definable by FO theories but still satisfy compactness: Con-
sider any FO theory having infinite models and consider the class of models of this
theory whose cardinality is not equal to a given infinite cardinal. This class satisfies
compactness but cannot be definable by any FO theory due to Löwenheim-Skolem the-
orem. Yet Łoś-Tarski theorem would hold over this class.

Having seen the usefulness of relativization in proving Conjecture 1 when B equals
0, it is natural to ask if this technique works for higher values of B too. We answer this
negatively.

3.2 Limitations of Relativization

We show by a concrete example that relativization cannot be used to prove the con-
jecture in general. This motivates us to derive necessary and sufficient conditions for
relativization to work.

Example 3: Consider φ = ∃x∀yE(x, y) over τ = {E}. Note that φ is in PSC(1).
Suppose φ is equivalent to ψ = ∃x∀nȳφ|xȳ for some n. Consider the structure M =
(Z,≤) namely the integers with usual ≤ linear order. Any finite substructure of M
satisfies φ since it has a minimum element (under the linear order). Then taking x to be
any integer, we see that M |= ψ. HoweverM �|= φ since M has no minimum element -
a contradiction. The same argument can be used to show that φ cannot be equivalent to
any sentence of the form ∃nx̄ ∀mȳ φ|x̄ȳ .

We now give necessary and sufficient conditions for relativization to work. Towards
this, we introduce the following notion. Consider φ ∈ FO(τ) s.t. φ ∈ PSC(B).
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Consider a vocabulary τB obtained by expanding τ with B fresh constants. Consider
the class Sall

φ of τB-structures with the following properties:

1. For each (M,a1, . . . , aB) ∈ Sall
φ where M is a τ−structure and a1, . . . , aB ∈ M ,

M |= φ and {a1, . . . , aB} forms a core of M w.r.t. φ.
2. For each model M of φ, for each core C = {a1, . . . , al} of M w.r.t. φ s.t. l ≤
B and for each function p : {1, . . . , B} → C with range C, it must be that
(M,p(1), . . . , p(B)) ∈ Sall

φ .

We now have the following.

Theorem 5. Given φ ∈ PSC(B), the following are equivalent.

1. Sall
φ is finitely axiomatizable.

2. φ is equivalent to ∃B x̄ ∀nȳ φ|x̄ȳ for some n ∈ N.
3. φ is equivalent to a ∃B∀∗ sentence ψ such that in any model M of ψ and φ, the

following hold:
(a) The underlying set of any witness for ψ is a core of M w.r.t. φ.
(b) Conversely, if C is a core of M w.r.t. φ, x1, . . . , xB are the ∃ variables of ψ and

f : {x1, . . . , xB} → C is any function with rangeC, then (f(x1), . . . , f(xB))
is witness for ψ in M .

Proof :
(1) → (2): Let Sall

φ be finitely axiomatizable. Check that Sall
φ ∈ PS so that by Łoś-

Tarski theorem, it is axiomatizable by a Π0
1 FO(τB)-sentence ψ having say n ∀ quan-

tifiers. Further, by Lemma 4, ψ is equivalent to γ = ∀nz̄ψ|z̄ . Now consider ϕ =
∃Bx̄ ∀nȳ φ|x̄ȳ . Firstly, from Lemma 5, φ → ϕ. Conversely, suppose M |= ϕ. Let
a1, . . . , aB be witnesses and consider the τB-structure MB = (M,a1, . . . , aB). Now
MB |= ∀nȳ φ|x̄ȳ . We will show that MB |= γ. Consider b1, . . . , bn ∈ M and let
M1 = MB({b1, . . . , bn}). Then M1 |= ∀nȳ φ|x̄ȳ . Check that the τ−reduct of M1 (i)
models φ and (ii) contains {a1, . . . , aB} as a core. ThenM1 ∈ Sall

φ and henceM1 |= ψ.
Since b1, . . . , bn were arbitrary, MB |= γ. Since γ ↔ ψ and ψ axiomatizes Sall

φ , the
τ−reduct of MB , namely M , models φ.

(2) → (3): Take ψ to be ∃Bx̄ ∀nȳ φ|x̄ȳ . Consider a model M of φ and ψ. The set C of
elements of any witness for ψ forms a core of M w.r.t. ψ. Then since φ↔ ψ, C is also
a core of M w.r.t. φ. Conversely, consider a core C of M w.r.t. φ. Then any substruc-
ture ofM containingC satisfies φ. Then check that elements ofC form a witness for ψ.

(3) → (1): Let φ ↔ ψ where ψ = ∃Bx̄ ∀nȳβ(x̄, ȳ) where β is quantifier free and ψ
satisfies the conditions mentioned in (3). Consider ϕ = ∀nȳ β[x1 
→ c1, . . . , xB 
→ cB]
where c1, . . . , cB are B fresh constants and xi 
→ ci means replacement of xi by ci. If
MB = (M,a1, . . . , aB) |= ϕ, then M |= ψ and hence M |= φ. Since a1, . . . , aB
are witnesses for ψ in M , they form a core of M w.r.t. φ by assumption, so that
MB ∈ Sall

φ . Conversely, if MB = (M,a1, . . . , aB) ∈ Sall
φ , thenM |= φ and a1, . . . , aB

form a core in M . Then by assumption, M |= ψ and a1, . . . , aB are witnesses for ψ.
Then MB |= ϕ. To sum up, ϕ axiomatizes Sall

φ .
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Consider φ and M in Example 3 above. Take any finite substructure M1 of M - it
models φ. There is exactly one witness for φ in M1, namely the least element under ≤.
However every element in M1 serves as a core. The above theorem shows that no ∃∀∗
sentence will be able to capture exactly all the cores through its ∃ variable.

In the following sections, we shall study the conjecture for several special classes of
FO and over special structures. Interestingly, in most of the cases in which the conjec-
ture turns out true, relativization works! However we also show a case for the conjecture
in which relativization does not work, yet the conjecture is true.

4 Positive Cases for the Conjecture

4.1 The Conjecture Holds for Special Fragments of FO

Unless otherwise stated, we consider relational vocabularies throughout the section.
The following lemma will be repeatedly used in the subsequent results.

Lemma 5. Let φ ∈ PSC(B). For every n ∈ N, φ implies ∃Bx̄ ∀nȳ φ|x̄ȳ .

Proof : Suppose M |= φ. Since φ ∈ PSC(B), there is a core C of M of size at most
B. Interpret x̄ to include all the elements of C (in any which way). Since C is a core,
for any n-tuple d̄ of elements of M , having underlying set D, the substructure of M
induced by C ∪D models φ. Then (M, ā, d̄) |= φ|x̄ȳ for all d̄ from M .

Lemma 6. Let τ be a monadic vocabulary containing k unary predicates. Let φ ∈
FO(τ) be a sentence of rank r s.t. φ ∈ PSC(B). Then φ is equivalent to ψ where
ψ = ∃Bx̄ ∀nȳ φ|x̄ȳ where n = r × 2k. For B = 0, n is optimal i.e. there is an FO
sentence in PSC(0) for which any equivalentΠ0

1 sentence has at least n quantifiers.

Proof : That φ implies ψ follows from Lemma 5. For the converse, suppose M |= ψ
where n = r × 2k. By an Ehrenfeucht-Fräissé game argument, we can show that M
contains a substructure MS such that (i) M ≡r MS , with |MS | ≤ n and (ii) for any
extension M ′ of MS in M , M ′ ≡r MS . The substructureMS is obtained by taking up
to r elements of each colour c ∈ 2τ present in M . An element a in structure M is said
to have colour c if for every predicate P ∈ Σ, M |= P (a) iff P ∈ c. Since M |= ψ,
there exists witnesses ā for ψ in M . Choose b̄ to be an n-tuple which includes the ele-
ments of MS . This is possible because |MS | ≤ n. Then we have, (M, ā, b̄) |= φ|x̄ȳ so
that M(āb̄) |= φ. But MS ⊆M(āb̄) ⊆M so that M(āb̄) ≡r M . Then M |= φ.

To see the optimality of n for B = 0, consider the sentence φ which states that there
exists at least one colour c ∈ 2τ such that there exist at most r− 1 elements with colour
c. The sentence φ can be written as a formula with rank r, as the disjunction over all
colours, of sentences of the form, ∃x1∃x2 · · · ∃xr−1∀xr(

∧r−1
i=1 xr �= xi) → ¬C(xr).

From the preceding paragraph,φ↔ ∀nȳ φ|ȳ where n = r×2k. Suppose φ is equivalent
to a ∀s sentence for some s < n. Then by Lemma 4, φ ↔ ϕ where ϕ = ∀sȳ φ|ȳ .
Then consider the structure M , which has r elements of each colour. Clearly, M �|= φ.
However check that every s-sized substructure ofM models φ. ThenM |= ϕ and hence
M |= φ - a contradiction.
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Lemma 7. Let S ∈ PSC(B) be a finite collection of τ−structures so thatS is definable
by a Σ0

2 sentence φ ∈ PSC(B). Then S is definable by the sentence ψ where ψ =
∃Bx̄ ∀nȳ φ|x̄ȳ for some n ∈ N.

Proof : Check that all structures in S must be of finite size so that φ exists. Let the size
of the largest structure in S be at most n. Consider ψ. Lemma 5 shows that φ → ψ.
Conversely, suppose M |= ψ. Then there exists a witness ā s.t. any extension of M(ā)
within M with at most n additional elements models φ. Since M is of size at most n,
taking the extension M of M(ā), we have M |= φ. Since φ defines S so does ψ.

Lemma 8. Consider φ ∈ Π0
2 given by φ = ∀nx̄ ∃mȳ β(x̄, ȳ) where β is quantifier

free. If φ ∈ PSC(B), then φ is equivalent to ψ where ψ = ∃Bū ∀nv̄ φ|ūv̄ .

Proof : From Lemma 5, φ → ψ. For the converse, let M |= ψ and let ā be a witness.
Consider an n−tuple b̄ from M . Then M1 = M(āb̄) is s.t. M1 |= φ. Then for x̄ = b̄,
there exists ȳ = d̄ s.t. d̄ is an m−tuple fromM1 andM1 |= β(b̄, d̄). ThenM |= β(b̄, d̄)
since M1 ⊆M . Hence M |= φ.

Lemma 9. Suppose φ ∈ PSC(B) and ¬φ ∈ PSC(B′). Then φ is equivalent to ψ
where ψ = ∃Bx̄ ∀B′

ȳ φ|x̄ȳ .

Proof : From Lemma 5, φ implies ψ. For the converse, supposeM |= ψ. Then there is a
witness ā for ψ s.t. for anyB′-tuple b̄, the substructure induced by āb̄ i.e.M(āb̄) models
φ. Suppose M �|= φ. Then M |= ¬φ so that there is a core C of M w.r.t. ¬φ, of size at
most B′. Let d̄ be a B′-tuple which includes all the elements of C. Then M(ād̄) |= φ.
But M(ād̄) ⊆M contains C so that M(ād̄) |= ¬φ – a contradiction.

Observe that for the special case of B = 0, we get combinatorial proofs of Łoś-Tarski
theorem for the fragments mentioned above. Moreover all of these proofs and hence the
results hold in the finite. We mention that the result of Lemma 8 holding in the finite
was proved by Compton too (see [7]). We were unaware of this until recently and have
independently arrived at the same result. The reader is referred to [12] for our studies
on more positive cases of Łoś-Tarski in the finite.

Interestingly, Lemma 9has implications for theΔ0
2 fragment of FO. DefineΔ0

2(k, l) ⊆
Δ0

2 to be the class of sentences which have a ∃k∀∗ and a ∀l∃∗ equivalent. Note that
Δ0

2 =
⋃

l,k≥0Δ
0
2(k, l). Lemma 9 gives us the following right away.

Theorem 6. The following are equivalent:

1. φ ∈ PSC(k) and ¬φ ∈ PSC(l).
2. φ is equivalent to a ∃k∀l and a ∀l∃k sentence.
3. φ ∈ Δ0

2(k, l).

As a corollary, we see that Δ0
2(k, l) is a finite class up to equivalence. We are not aware

of any other semantic characterization of these natural fragments ofΔ0
2. This highlights

the importance of the notion of cores and the sizes thereof.
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4.2 The Conjecture over Special Classes of Structures

We first look at the conjecture over finite words. These are finite structures in the vo-
cabulary containing one binary predicate ≤ (always interpreted as a linear order) and
a finite number of unary predicates (which form a partition of the universe). Interest-
ingly, we obtain something stronger than the conjecture. Towards this, we note that
the idea of relativization can be naturally extended to MSO. Given φ in MSO and
a set of variables Z = {z1, . . . , zn}, φ|Z is obtained by first converting all ∀X to
¬∃X and then replacing every subformula ∃Xχ(X, . . .) with

∨
Y⊆Z((

∧
z∈Y X(z) ∧∧

z∈Z\Y ¬X(z)) ∧ χ(X, . . .)). The resulting FO formula is then relativized to Z and
simplified to eliminate the (original) SO variables. As before, abusing notation, we use
φ|Z and φ|z̄ interchangeably.

Theorem 7. Over words, a MSO sentence φ is in PSC(B) iff it is equivalent to ψ where
ψ = ∃Bx̄∀kȳφ|x̄ȳ for some k ∈ N.

Proof sketch: We use the fact that over words, by the Büchi-Elgot-Trakhtenbrot theo-
rem [4], MSO sentences define regular languages. The ‘If’ direction is easy. For the
‘Only if’ direction, let the regular language L defined by φ be recognized by an n state
automaton, say M. If there is no word of length > N = (B + 1) × n in L, then L is
a finite language of finite words and hence from Lemma 7, we are done. Else suppose
there is a word of length > N in L. Then consider ψ above for k = N . It is easy to
observe that φ implies ψ. In the other direction, supposew |= ψ for some wordw. Then
there exists a set A of elements i1, . . . , im s.t. (i) m ≤ B and i1 < i2 · · · < im and
(ii) every substructure of w of size at most N +m containing A models φ. We claim
(proof sketched below) that there exists a substructure w1 of w containing A such that
(i) |w1| ≤ N and (ii) w1 ∈ L iff w ∈ L. Then w1 models φ and hence w |= φ. Thus ψ
implies φ and hence is equivalent to φ.

The proof of the claim used in the argument above proceeds as follows. Let qj be
the state reached by automaton M upon reading the subword w[1 . . . ij ]. The subword
w[(ij +1), . . . ij+1] takes M from qj to qj+1 through a sequence S of states. Since M
has only n states, if w[(ij + 1), . . . ij+1] is long, then S will contain at least one loop.
Then getting rid of the subwords that give rise to loops, we will be able to obtain a sub-
word of w[(ij + 1), . . . ij+1] that takes M from qj to qj+1 without causing M to loop
in between. It follows that this subword must be of length at most n. Collecting such
subwords of w[(ij + 1), . . . ij+1] for each j and concatenating them, we get a subword
of w of length at most N containing set A that takes M from the initial state to the
same state as w. Details can be found in [12].

For the special case of B = 0, we obtain Łoś-Tarski theorem for words and also give
a bound for the number of ∀s in the equivalent Π0

1 sentence in terms of the number of
states of the automaton for φ (A simpler proof of Łoś-Tarski using Higman’s lemma
can be found in [12] though this does not tell anything about the number of ∀s). We
have not encountered this result in our literature survey.

So far, relativization has worked in all the cases we have seen. We now give an
example of a class of structures over which relativization fails, yet the conjecture is
true.
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Consider a subclass C of bounded degree graphs in which each graph is a collection
(finite or infinite) of oriented paths (finite or infinite). For clarity, by oriented path we
mean a graph isomorphic to a connected induced subgraph of the graph (V,E) where
V = Z and E = {(i, i+ 1) | i ∈ Z}. Observe that C can be axiomatized by a theory T
which asserts that every node has in-degree at most 1 and out-degree at most 1 and that
there is no directed cycle of length k for each k ≥ 0. We first show the following.

Lemma 10. For eachB ≥ 1, there is a sentence φ ∈ PSC(B) which is not equivalent,
over C, to any ψ of the form ∃B x̄ ∀nȳ φ|x̄ȳ .

Proof : Consider φwhich asserts that there are at leastB elements of total degree at most
1 where total degree is the sum of in-degree and out-degree. Clearly φ ∈ PSC(B) since
it is expressible as a ∃B∀∗ sentence. Suppose φ is equivalent to ψ of the form above for
some n ∈ N. Consider M ∈ C which is a both-ways infinite path so that every node
in M has total degree 2 - then M �|= φ. Consider B distinct points on this path at a
distance of at least 2n from each other and form a B−tuple say ā with them. Let b̄ be
any n−tuple from M . Now observe that M(āb̄) is a finite structure which has at least
B distinct paths (0-sized paths included). Then M(āb̄) |= φ so that (M, ā, b̄) |= φ|x̄ȳ .
Since b̄ was arbitrary,M |= ψ so that M |= φ. Contradiction.

However the conjecture holds over C! The proof is currently lengthy so we provide only
a sketch and refer the reader to [12] for details.

Theorem 8. Over the class C of graphs defined above, φ ∈ PSC(B) iff φ is equivalent
to a ∃B∀∗ sentence.

Proof Sketch: If τ = {E} is the vocabulary of φ, let τB be a vocabulary obtained by
adding B fresh constants to τ . Given a class S of τ−structures, define SB to be the
class of all τB−structures s.t. the τ−reduct of each structure in SB is in S. Then the
proof can be divided into two main steps. Below ≡ denotes elementary equivalence.

Step 1: Given φ, define class C′ ⊆ C such that for every structure A ∈ CB , there exists
a structure D ∈ C′

B such that A ≡ D (Property I). Since compactness theorem holds
over CB (as CB is defined by the same theory T as C), it also holds over C′

B.

Step 2: Show that φ is equivalent to an ∃B∀∗ sentence over C′, hence showing the same
over C as well.

Note: The conditions in Step 1 imply that for every A ∈ C, there exists a D ∈ C′ such
that A ≡ D. Then since compactness theorem holds over C, it also holds over C′.

Suppose the rank of φ is m. We define C′ to be the class of graphs G ∈ C such that
either (a) there exists a bound nG (dependent onG) such that all paths in G have length
less than nG (this does not mean that G is finite – there could be infinite paths of the
same length in G) or (b) there are at least (B +m + 2) paths in G that are infinite in
both directions. It can be shown that C′ satisfies Property I (see [12]).

Now, to show Step 2, we use the following approach.
Let P ∈ C′ be s.t. P |= φ. Choose a core Z of P (recall that φ ∈ PSC(B)). Let

MP ∈ C′
B be a τB−structure whose τ−reduct is P , and in which each element of

Z is assigned to some constant. Let ΓMP be the set of all ∀∗ sentences true in MP .
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We can show that (see [12]) if M ′ ∈ C′
B is such that M ′ |= ΓMP , then M ′ |= φ.

That is, if every finite substructure of M ′ is embeddable in MP , then M ′ |= φ. Then
over C′

B , ΓMP → φ. Now, since C′
B satisfies the compactness theorem, there exists a

finite subset ΓMP
0 of ΓMP such that ΓMP

0 → φ over C′
B. Note that, since ΓMP

0 is a
conjunction of ∀∗ sentences, we can assume that ΓMP

0 is a single ∀∗ sentence.
Let φP be the τ−sentence of the form ∃B∀∗ obtained by replacing the B constants

in ΓMP
0 with B fresh variables, and by existentially quantifying these variables. We

can then show that φP → φ. It is also easy to see that φ →
∨

P∈C′,P |=φ φP , since
if P |= φ, then the witnesses of the ∃ quantifiers in φP can be chosen to be the core
Z mentioned above. By the compactness theorem over C′, there exists a finite set of
structures, say {P1, · · · , Pm}, such that Pi ∈ C′, Pi |= φ and φ →

∨i=m
i=1 φPi . Then,

we have φ ↔
∨i=m

i=0 φPi over C′. Since each φPi is of the form ∃B∀∗, the sentence
∨i=m

i=0 φPi is also of the same form. This completes Step 2 of the proof.

5 Conjecture Fails over Special Classes of Structures

We first look at the class F of all finite structures. Łoś-Tarski theorem fails over this
class and hence so does Conjecture 1 (for B = 0). However, we have the following
stronger result. We prove it for relational vocabularies (constants permitted).

Lemma 11. For relational vocabularies, Conjecture 1 fails, over F , for each B ≥ 0.

Proof : We refer to [1] for the counterexampleχ for Łoś-Tarski in the finite. Let τ be the
vocabulary of χ (i.e. {≤, S, a, b}) along with a unary predicateU . Let us call an element
x as having colour 0 in a structure if U(x) is true in the structure and having colour 1
otherwise. Let ϕ be a sentence asserting that there are exactlyB elements having colour
0 and these are different from a and b. Then consider φ = ¬χ ∧ ϕ. Check that since
¬χ is preserved under substructures in the finite, in any model of φ, the B elements of
colour 0 form a core of the model w.r.t. φ. Then φ ∈ PSC(B). Suppose φ is equivalent
to ψ given by ∃B x̄∀nȳ β where β is quantifier-free. Observe that in any model of φ and
ψ, any witness for ψ must include all the B elements of colour 0 (else the substructure
formed by the witness would not modelϕ and hence φ, though it would modelψ). Con-
sider the structure M = ({0, 1, . . . , B + 2n + 3},≤, S, a, b, U) where ≤ is the usual
linear order on numbers, S is the (full) successor relation of ≤, a = 0, b = B + 2n+ 3
and U = {1, . . . , B}. Now M �|= φ since M �|= ¬χ. Consider M1 which is identical to
M except that S(B+ n+1, y) is false in M1 for all y. Then M1 |= φ so that M1 |= ψ.
Any witness ā for ψ must include all the B colour 0 elements of M1. Then choose
exactly the same value, namely ā, from M to assign to x̄. Choose any b̄ as ȳ from M .
Check that it is possible to choose d̄ as ȳ from M1 s.t. M(āb̄) is isomorphic to M1(ād̄)
under the isomorphism f given by f(0) = 0, f(B+2n+3) = B+2n+3, f(ai) = ai
and f(bi) = di where ā = (a1, . . . , aB), b̄ = (b1, . . . , bn) and d̄ = (d1, . . . , dn). Then
since M1 |= β(ā, d̄), M |= β(ā, b̄). Then M models ψ, and hence φ. But that is a
contradiction.

The example expressed by χ can also be written as a sentence in a purely relational
vocabulary. Then one can do a similar proof as above to show that for purely relational
vocabularies too, for each B ≥ 0, Conjecture 1 fails over F (see [12]).
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So far, in all the cases we have seen, it has always been the case that Conjecture 1
and Łoś-Tarski theorem either are both true or are both false. We then finally have the
following result which is our first instance of a class of structures over which Łoś-Tarski
theorem holds but the conjecture fails.

Theorem 9. Over the class C of graphs in which each graph is a finite collection of
finite undirected paths, for each B ≥ 2, there is a sentence φ ∈ PSC(B) which is not
equivalent to any ∃B∀∗ sentence. However, Łoś-Tarski theorem holds over C.

Proof : Łoś-Tarski theorem holds from the results of Dawar et al. over bounded degree
structures [2]. As a counterexample to the conjecture for B ≥ 2, consider the property
D which asserts that there are at least B paths in the graph (0 length included). It can
be shown (see [12]) thatD is equivalent to the following conditionD′ parametrized by
B: (The number of nodes of degree 0) + 1

2× (the number of nodes of degree 1) ≥ B.
Then given B, take φ to be the sentence expressing D′ for B. We reason out for the
case of B = 2 since for the other cases an analogous reasoning can be done (see [12]).

Every model N of φ has at least 2 paths of length ≥ 0. Consider set A formed by
an end point of one path and an end point of the other path. Check that A is a core of
N w.r.t. φ so that φ ∈ PSC(2). Suppose φ is equivalent over C to ψ = ∃2x̄ ∀nȳ β
where β is quantifier-free. Consider a model N of φ having exactly 2 paths each of
length ≥ 5n. Then since N |= ψ, consider the witnesses a1, a2 for ψ. It cannot be that
a1, a2 are both from the same path else the path by itself would be a model for ψ and
hence φ. Now consider a structure M containing a single path that is of length ≥ 5n
with end points p1, p2. If a1 (resp. a2) is at a distance of ≤ n from any end point in N ,
choose a point b1 (resp. b2) at the same distance from p1 (resp. p2) in M . Else choose
b1 (resp. b2) at a distance of n+1 from p1 (resp. p2). Choose any d̄ as ȳ fromM . Check
that it is possible to choose ē as ȳ from N s.t. M(b1b2d̄) is isomorphic to N(a1a2ē)
under the isomorphism f given by f(bi) = ai, f(dj) = ej where d̄ = (d1, . . . , dn) and
ē = (e1, . . . , en). Since N |= β(a1, a2, ē), M |= β(b1, b2, d̄). Then M models ψ, and
hence φ. Contradiction.

Interestingly however, the conjecture holds over C for B = 1. We also give a simpler
proof for the case of B = 0 i.e. Łoś-Tarski over C (see [12]).

6 Conclusion and Future Work

For future work, we would like to investigate cases for which combinatorial proofs of
Conjecture 1 can be obtained. This would potentially improve our understanding of
the conditions under which combinatorial proofs can be obtained for the Łoś-Tarski
theorem as well. An important direction of future work is to investigate whether the
conjecture holds for important classes of finite structures for which the Łoś-Tarski the-
orem holds. Examples of such classes include those considered by Atserias et al in [2].
We have also partially investigated how preservation theorems can be used to show FO
inexpressibility for many typical examples (see [13]). We would like to pursue this line
of work as well in future.
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