
Program Verification using

Small Models

Nakshatra Gupta, Prajkta Kodavade, Shrawan Kumar,
Abhisekh Sankaran, Akshatha Shenoy, R. Venkatesh

TCS Research, Pune

RHPL 2023

IIIT Hyderabad

Dec 20, 2023

Introduction

Program Verification problem

Given a program P and an assertion A, is it the case that for
every input I, the assertion A holds at the end of the execution
of P on I?

● This problem is undecidable (Turing ’36).

● We explore the use of the methods from model theory in
investigating this problem.

Dec 20, 2023 Program Verification using Small Models 2/14

Translation into logic

● Given the program P and assertion A, we encode these
respectively as sentences φP and φA of first order logic
(FO) over a suitable vocabulary.

● The sentences would be such that, over the class Mod(φax)
of finite models of a small set φax of axioms (i.e. modulo
φax), the following hold:

● the models of φP capture precisely (suitably abstract
representations of) the executions of P for arbitrary
inputs

● the models of φA ∧ φP capture precisely the said
executions of P that satisfy A

Dec 20, 2023 Program Verification using Small Models 3/14

FO satisfiability

● Verifying whether P satisfies A then translates to checking
modulo φax, the validity of the FO sentence

φP → φA

● Equivalently, this verification translates to checking modulo
φax, the satisfiability of

φP ∧ ¬φA

.● FO satisfiability in the finite is undecidable (r.e.) in general
(Trakhtenbrot ’50).

● We explore the use of a particular model-theoretic condition
known in the logic literature to give decidability results,
called the small model property (SMP).

Dec 20, 2023 Program Verification using Small Models 4/14

Small model property (SMP)

● We say that (a class of sentences of the form)
β ∶= φP ∧ ¬φA has the small model property if there is a
“nice” function f ∶ N→ N, such that the following holds
modulo φax:

There is a model for β →
There is a model for β of size ≤ f(∣β∣)

● From the perspective of P and A, this translates to
asserting the existence of a small execution of P violating
A on some input (and hence on a small input), if at all
there is some finite length execution of P violating A.

Dec 20, 2023 Program Verification using Small Models 5/14

Small model property (SMP)

● We say that (a class of sentences of the form)
β ∶= φP ∧ ¬φA has the small model property if there is a
“nice” function f ∶ N→ N, such that the following holds
modulo φax:

There is a model for β →
There is a model for β of size ≤ f(∣β∣)

● This gives a complete decision procedure to check if β is
satisfiable – enumerate all structures of size ≤ f(β) and
check for the truth of α ∶= φax ∧ β. This can be
implemented using a SAT solver like Z3.

Dec 20, 2023 Program Verification using Small Models 5/14

Small model property (SMP)

● We say that (a class of sentences of the form)
β ∶= φP ∧ ¬φA has the small model property if there is a
“nice” function f ∶ N→ N, such that the following holds
modulo φax:

There is a model for β →
There is a model for β of size ≤ f(∣β∣)

● Above“nice” in theory usually means“computable”, but for
our purposes it means bounds that would make SAT solvers
checking for small models of α, to run within competitive
time (w.r.t. say SV-COMP).

Dec 20, 2023 Program Verification using Small Models 5/14

Min program P and min assertion A

Program P :

m = a[0];

i = 0;

while (i < n)

{

if (m > a[i])

m = a[i];

i++;

}

Assertion A:

i = 0;

while (i < n)

{

assert(m <= a[i]);

i = i + 1;

}

return 0;

● The sentences φax, φP and φA are multi-sorted FO
sentences over a suitably chosen vocabulary.

Dec 20, 2023 Program Verification using Small Models 6/14

Main results for min program and assertion

Let P = min program and A = min assertion.

Theorem (Small models for α).

If there is a finite model for α ∶= φax ∧ φP ∧ ¬φA, then there is
also such a model in which the sizes of (the domains
interpreting) the sorts are all bounded by 7.

Equivalently:

Theorem (Small models for min).
If for some input array, the execution of the min program
violates the min assertion, then there is also such an input array
of size at most 7.

Dec 20, 2023 Program Verification using Small Models 7/14

Main results for min program and assertion

Let P = min program and A = min assertion.

Theorem (Small models for α).

If there is a finite model for α ∶= φax ∧ φP ∧ ¬φA, then there is
also such a model in which the sizes of (the domains
interpreting) the sorts are all bounded by 7.

Equivalently:

Theorem (Smaller models for min).
If for some input array, the execution of the min program
violates the min assertion, then there is also such an input array
of size at most 3.

Dec 20, 2023 Program Verification using Small Models 7/14

Intuitive idea

● Consider an array a with say 3 elements.

7 3 5

● The“m-unitialized”min program defines a function f from
input values of m to output values of m.

● Can we construct another array b of size lesser than a such
that the min program computes the same function f from
input m to output m?

Dec 20, 2023 Program Verification using Small Models 8/14

Intuitive idea

● Consider an array a with say 3 elements.

7 3 5

● The“m-unitialized”min program defines a function f from
input values of m to output values of m.

● Can we construct another array b of size lesser than a such
that the min program computes the same function f from
input m to output m?

● Yes! Let b be the array as below:

min{7, 3} 5

Dec 20, 2023 Program Verification using Small Models 8/14

Intuitive idea

● Consider an array a with say 3 elements.

7 3 5

● The“m-unitialized”min program defines a function f from
input values of m to output values of m.

● Can we construct another array b of size lesser than a such
that the min program computes the same function f from
input m to output m?

● Exactly. Let b be the array as below:

min{7, 3, 5}

Dec 20, 2023 Program Verification using Small Models 8/14

Intuitive idea

● Suppose now there is a large array A on which the min
program execution violates the min assertion.

m0 mk mk+1 mnm−1 mk+2 mk+3

v0 vk vk+1 vnvk+2 vk+3A

vk < mn

The mi’s represent the values of m across iterations of the
min program. So m−1 = v0 and mi =min{mi−1, vi}.

Dec 20, 2023 Program Verification using Small Models 9/14

Intuitive idea

● Suppose now there is a large array A on which the min
program execution violates the min assertion.

m0 mk mk+1 mnm−1 mk+2 mk+3

v0 vk vk+1 vnvk+2 vk+3A

vk < mn

Dec 20, 2023 Program Verification using Small Models 9/14

Intuitive idea

● Suppose now there is a large array A on which the min
program execution violates the min assertion.

m0 mk mnm−1 mk+3

v0 vk min{vk+1, vk+2, vk+3} vnA′

vk < mn

Dec 20, 2023 Program Verification using Small Models 9/14

Intuitive idea

● Suppose now there is a large array A on which the min
program execution violates the min assertion.

m0 mk mnm−1 mk+3

v0 vk min{vk+1, vk+2, vk+3} vn

vk < mn ∧ |A′| < |A|

A′

Dec 20, 2023 Program Verification using Small Models 9/14

Intuitive idea

● Suppose now there is a large array A on which the min
program execution violates the min assertion.

m0 mk mnm−1 mk+3

v0 vk min{vk+1, vk+2, vk+3} vn

vk < mn ∧ |A′| < |A|

A′

● Recursively doing the reduction above on either side of
a[k], we get the array below which also witnesses the min
assertion violation.

min{v0, . . . , vk−1} min{vk+1, . . . , vn}vkA∗

Dec 20, 2023 Program Verification using Small Models 9/14

Intuitive idea

● The min program and assertion pair then has a small array
of size 3 witnessing the assertion violation.

● There are however infinitely many arrays of even size 1.

● How do we check all arrays of size 3 for assertion violations?

Observation.

1 The min program does only comparisons of values.

2 The number of“order types”of 3 element arrays is small.
(Specifically: 13)

● We check all arrays of size 3 whose elements take values
from {0, 1, 2}. ◻

Dec 20, 2023 Program Verification using Small Models 10/14

Overall approach

(P,A) (ϕP , ϕA)

k

Yes

No

Return “unknown”

Sat

Unsatf (k)
I III IVII

Return “No”
with proof P1

Return “Yes”
with proof P2

ϕax

I: Program + assertion to logic conversion

● Converts the input program P and assertion A to FO
sentences φP and φA. Also generates a small set φax of
axioms that define the class within which to investigate the
models of β ∶= φP ∧ ¬φA.

Dec 20, 2023 Program Verification using Small Models 11/14

Overall approach

(P,A) (ϕP , ϕA)

k

Yes

No

Return “unknown”

Sat

Unsatf (k)
I III IVII

Return “No”
with proof P1

Return “Yes”
with proof P2

ϕax

II: Removal of iterations

● Find k such that executions of the loop on arrays of size k
and arbitrary initializations of the other variables, can be
reduced strictly preserving the input-output behaviour of
the loop. This reduction is done using Z3 that attempts a
“removal of iterations”modifying the arrays suitably.

Dec 20, 2023 Program Verification using Small Models 11/14

Overall approach

(P,A) (ϕP , ϕA)

k

Yes

No

Return “unknown”

Sat

Unsatf (k)
I III IVII

Return “No”
with proof P1

Return “Yes”
with proof P2

ϕax

III: Small model bound f(k) computation

● Computing a number f(k) such that if α ∶= φax ∧ β has a
model of size > f(k), then it also has a model of size
≤ f(k).

Dec 20, 2023 Program Verification using Small Models 11/14

Overall approach

(P,A) (ϕP , ϕA)

k

Yes

No

Return “unknown”

Sat

Unsatf (k)
I III IVII

Return “No”
with proof P1

Return “Yes”
with proof P2

ϕax

IV: Searching for a model in structures of size ≤ f(k)
● Checking for the satisfiability of α in structures of size
≤ f(k) using Z3.

Dec 20, 2023 Program Verification using Small Models 11/14

P1 and P2

● As seen earlier, for the min program and min assertion, we
can take k = 3 and f(k) = 7 (better still f(k) = 3).

● In case stage IV returns“Sat”, the proof P1 is the model
M∗ of α of size ≤ f(k) returned by Z3.

● We can also return P1 as the translation of M∗ to an input
array a∗ and the execution trace of P on a∗.

Dec 20, 2023 Program Verification using Small Models 12/14

P1 and P2

● As seen earlier, for the min program and min assertion, we
can take k = 3 and f(k) = 7 (better still f(k) = 3).

● In case stage IV returns“Unsat”, then the proof P2 can be
returned as:

● the unsat core of α (over structures of sizes ≤ f(k))
+

● an inductive proof over l ≥ f(k) of the statement that:

no model of size ≤ l Ð→ no model of size ≤ l + 1
● The inductive proof can be presented by say a program
written in Coq.

Dec 20, 2023 Program Verification using Small Models 12/14

Experiments

● We analyzed about 10 programs, primarily variants of min
and similar programs (search, sortedness, etc.)

● The k value for most of these programs is between 3 and 4,
and the f(k) value between 7 and 9.

● On some of these (“reverse”min and“bubblesort”min),
VeriAbs returned ‘Unknown’.

● The runtimes for the small model check are usually very
small (∼ 0.1 seconds).

● An end-to-end implementation of the overall approach is
still under progress, so a comparison of runtimes with
existing tools remains to be done.

Dec 20, 2023 Program Verification using Small Models 13/14

Future work

● We have a formulation of a class of programs generalizing
min for which we believe our analysis lifts as is. This just
needs to be confirmed and written down.

● Extensions to investigate:

● “Series compositions”of loops
(Would require inferring conditions to check of the
individual loops from the given assert condition)

● Nested loops

● Some arithmetic

● Graph algorithms

Dec 20, 2023 Program Verification using Small Models 14/14

Dhanyavād

● If you are interested in this work, TCS Research would be
happy to collaborate.

● The reports for this work can found at
https://abhisekhs.github.io.

Program Verification using Small Models

https://abhisekhs.github.io

Appendix

Program Verification using Small Models

Variants of min: Reverse min

Revmin(n, a[n]):

++++++++++++++++

m = a[n-1];

i = 0;

while (i < n)

{

if (m > a[n-1-i])

m = a[n-1-i];

i++;

}

assert(forall j. (j >= 0 && j < n)

--> m <= a[j]);

Program Verification using Small Models

Variants of min: Bubblesort min

Bubblesortmin(n, a[n]):

+++++++++++++++++++++++

i = 0;

t = 0;

while (i < n) {

if (a[i] < a[i+1]) {

t = a[i+1];

a[i+1] = a[i];

a[i] = t;

}

}

m = a[n-1];

assert(forall j. (j >= 0 && j < n)

--> m <= a[j]);

Program Verification using Small Models

Beyond min: Relativized min I

Relmin-I(n, a[n], p):

+++++++++++++++++++++

m = a[0];

i = 0;

while (i < n)

{

if (m > a[i] && a[i] != p)

m = a[i];

i++;

}

assert(forall j. (j >= 0 && j < n && a[j] != p)

--> m <= a[j]);

Program Verification using Small Models

Beyond min: Relativized min II

Relmin-II(n, a[n], p[n]):

++++++++++++++++++++++++++

m = a[0];

i = 0;

while (i < n)

{

if (p[i] == 1)

if (m > a[i])

m = a[i];

i++;

}

assert(forall j. (j >= 0 && j < n && p[j] = 1)

--> m <= a[j]);

Program Verification using Small Models

Beyond min: Search

Search(n, a[n], p):

+++++++++++++++++++

f = 0;

i = 0;

while (i < n)

{

if (a[i] == p)

f = 1;

i++;

}

assert(f = 0 ||

forall j. (j >= 0 && j < n && a[j] = p)

--> f = 1);

Program Verification using Small Models

Generalizing min to a class of programs: MLL

MLL = Monotone-loops without Lookback or Lookahead

// Variable and array declarations

// Initializations that are either of the form

// x = const or x = y where x and y are either

// variables or array elements

// A loop-free set of statements that could

// involve conditions

i := 0;

while (i < n)

{

// MLL loop body

i++;

}

Program Verification using Small Models

Generalizing min to a class of programs: MLL

MLL = Monotone-loops without Lookback or Lookahead

MLL loop body:

// A sequence of statements in SSA form that

// could involve conditions and that satisfy

// the following constraints:

// a. feature only i as index variable

// b. do not modify i

// c. use only comparison as an operator

// d. refer only to a[i] for an array a if

// they at all refer to any element of a

// e. Assignment statements appear only

// at the ends of branches of the

// control flow graph of the main

// loop body

Program Verification using Small Models

