
Program Verification using Small Models

Nakshatra Gupta, Prajkta Kodavade, Shrawan Kumar, Abhisekh Sankaran,
Akshatha Shenoy, R. Venkatesh

Tata Consultancy Services Research, Pune, India

Abstract

We explore the use of methods from mathematical logic, in particular model theory,
in the verification of array programs. We consider the particular case of the min
program P that computes the minimum of a given array, and the corresponding min
assertion A that asserts that the value computed by the program is the minimum of
the given array. We formulate the program P and assertion A in multi-sorted first
order logic (FO), via sentences φP and φA respectively. The sentence φP is such that
modulo a small set φax of axioms, the models of φP are in 1-1 correspondence with
(suitably abstract representations of) the executions of P on arbitrary input arrays.
Likewise, the models of φA restricted to the class of models of φP ∧ φax, correspond
to (suitably abstracted) executions of P that satisfy the assertion A.

We now verify the min program P against the min assertion A by showing that the
sentence αP,A ∶= φax ∧ φP ∧ ¬φA has the small model property. Specifically, we show
that if αP,A has a model of some finite size, then there is also such a model in which the
domains interpreting the sorts have all sizes bounded by 7. The desired verification
then reduces to checking whether there is a small model (with sort sizes at most 7) for
αP,A; this check is performed using the SAT solver Z3. The small model property is
established by showing that models of αP,A that are large admit local reductions that
are effected by “removal of iterations” in the executions of P that they correspond to.

Generalizing from our analysis above, we formulate a class of programs that we
call Monotone-loop programs without Lookback or Lookahead, denoted MLL, and argue
that for any program Q in MLL and any assertion B, if φQ and φB are resp. the
logical formulations of Q and B, then φax ∧ φQ ∧ ¬φB has the small model property
provided that certain combinatorial model-theoretic checks succeed, and that φB is a
universal FO sentence. Consequently, the same translates to Monotone-loop programs
with Bounded Lookback and Lookahead, denoted MLL+, since we argue that MLL is
sufficiently expressive to subsume MLL+ upto equivalence.

1 Introduction

Proving properties of programs that process large arrays is hard. A variety of approaches
have been explored including the development of a theory of arrays [1, 4, 5, 10, 13, 14, 15],
static analysis techniques like smashing and partitioning [2, 3, 8, 9, 11, 12], and loop
reduction techniques like pruning and shrinking [16, 17]. Techniques like pruning and
shrinking show the equivalence of the original program with respect to the property to be
verified, to a program with a small finite number of loop iterations, thus enabling the use

1

Min(n, a[n]):

+++++++++++++

m = a[0];

i = 0;

while (i < n)

{

if (m > a[i])

m = a[i];

i++;

}

assert(A);

Assert-min(n, a[n]):

+++++++++++++++++++

i = 0;

while (i < n)

{

assert(min <= a[i]);

i = i + 1;

}

return 0;

A ∶= ∀j (j ≥ 0 ∧ j < n)→m ≤ a[j]

Figure 1: The min program on the left and the min assertion as a program on the right.
The min assertion can also be represented as an FO formula as above. (In our analysis
though, we will consider a slightly different FO formulation.)

of bounded model checking to prove the property. This paper is inspired by this idea, and
extends it using methods from mathematical logic. We specifically look at the concrete
example of the min program and the min assertion as depicted in Figure 1. The program
computes the minimum of a given array, and the assertion states that the value computed
by the program is the minimum of the given array. We develop a model-theoretic approach
to analyse the program against the assertion, whose overview we describe in this paper.
We refer the reader to [22] for the technical details. The methods used in [22] admit
extensions to various other programs that we describe subsequently in this introduction.
Presently, we give a brief description of our approach below.

We verify the min program P for the min assertion A via translating P and A into
sentences of multi-sorted first order logic (FO), that we denote φP and φA respectively. We
use three specific sorts in our logical formulation: an “index sort”, an “iteration sort” and
a “value sort”. The index sort is intended to model the set of indices of the input array a
of P , the iteration sort to model the set of iteration numbers of the iterations of the loop as
P executes on the input, and the value sort is intended to capture the values contained in
the array a and the values the variable m takes during the execution of P . All of these sets
have natural linear orders on them that would be needed in our formulation. We hence
have binary predicates for these linear orders in our vocabulary, along with predicates
for their corresponding successor relations. In addition, the vocabulary contains three
binary predicates to encode the input array a, and the sequences of values taken by the
variables m and i. Each of these predicates is intended to be interpreted as the graph
of a function from a suitable domain sort to a suitable co-domain sort; for instance, the
predicate for a would represent a function from the index sort to the value sort. These
intended interpretations (or constraints on them) of the predicates in our vocabulary are

2

captured using a finite set of axioms, the conjunction of which we denote φax. We will be
interested in only those models of the sentences φP and φA that are finite and that satisfy
the axioms φax; the other models of φax have no correspondence with the structures that
are used (or that are inherent) in the program P .

Our formulation of the sentence φP is such that modulo the axioms φax, the models of
φP are in 1-1 correspondence with suitably abstract representations of the executions of
P on arbitrary input arrays (Theorem 2.2 and Remark 2.3). Here by an execution being
suitably abstracted, we mean that the execution is seen as a tuple consisting of the input
array a, and the sequences of values for the m and i variables at the end of the iterations
of the loop as P runs on the array a (as opposed to also keeping track the values of the
variables at all intermediate points in the loop body of P). Likewise, our formulation of
φA is such that, restricted to the (finite) models of φax∧φP , the models of φA correspond
to the executions of P that satisfy the assertion A. The task of verifying P against A
then translates to checking whether the implication “φP → φA” holds modulo φax; that is,
whether the mentioned implication is a validity over the class of models of φax. Checking
the mentioned validity can equivalently be cast as checking the unsatisfiability of the
negation of the implication, so the unsatisfiability of “φP ∧ ¬φA” modulo φax, which in
turn is equivalent to the (unrestricted) unsatisfiability of the sentence “φax ∧ φP ∧ ¬φA”.

It is however well-known that the satisfiability problem for FO is undecidable, over
both arbitrary structures (shown by Turing [19]), and over finite structures (shown by
Trakhtenbrot [20]). (Additionally, arbitrary FO-SAT is co-r.e. while finite FO-SAT is r.e.).
These results hold even when the vocabulary contains just one binary predicate, further
even when the binary predicate is required to satisfy the axioms of a function (further
still for prefix FO formulae with only one quantifier alternation beginning with universal
quantifiers) [18]. As a consequence, checking the satisfiability of “φax∧φQ∧¬φB” can easily
become undecidable for a general programQ and assertion B. In view of the undecidability
results, there has been an extensive study of decidable fragments of FO, beginning withe
work of Löwenheim in 1915 [21] and culminating in the identification of all maximal
prefix classes of FO that are decidable for the SAT problem [18, Chapter 1]. Examples
of such classes apart from the Löwenheim class, include the Bernays-Schönfinkel-Ramsey
class (also called Effectively Propositional Logic), the Ackermann class, and classes due
to Gurevich, Shelah and Rabin (separately)1.

The satisfiability of all the classes mentioned above, when they admit finite models for
all of their satisfiable formulae, goes via showing the small model property (SMP) for the
class [18]. This property states that for any sentence in the class, if it has a finite model,
then there is also a model of size bounded by some computable function of the length of the
sentence. The SMP ensures that the SAT problem for the class is decidable: one just needs
to check all structures of sizes up to the “small model bound” for whether they are models
of the given FO sentence. We adopt this approach for checking the satisfiability of our
logical formulation as well; that is, we attempt to show the satisfiability of φax∧φP ∧¬φA

via showing that it has the SMP. Unfortunately however, given the particular details of
our logical formulation, none of the above mentioned classes shown to have the SMP serve
to help since their syntax is quite restricted, and furthermore in general, the bounds on
the small model sizes for formulae of the classes is very large: exponential or higher. Given

1Recently, a workshop titled “The Decision Problem in First Order Logic (DPFO 2023)” surveying the
history of developments in the study of the FO-SAT was conducted at LICS ’23.

3

our requirements of having small model bounds that would allow for a SAT solver like
Z3 to run in competitive time with respect to existing tools for program verification, we
develop our own method to show the SMP for the programs and assertions we consider.

The essential idea behind showing the SMP for αP,A ∶= φax ∧ φP ∧ ¬φA is as follows
(see Figure 2 for a block diagram of the overall approach). We show that any model
M of αP,A whose iteration sort size is at least 8, admits a “local reduction” to yield
another model M ′ of αP,A whose iteration sort size is strictly smaller than that of M
(Theorem 4.2). We describe the local reduction from the perspective of program execution.
For any given execution E of the loop of P on an input array a, the reduction consists of
identifying a small interval of iterations in the execution, and the corresponding subarray
of the array a accessed in the interval’s iterations, for which it is possible to “remove
some iterations” and the corresponding array elements, and modify the resulting reduced
subarray to preserve the I/O behaviour of the loop relative to the interval. That is, for
instance, if i, i+1, i+2 is (constitute the set of numbers of the iterations in) the mentioned
interval and a[i], a[i + 1], a[i + 2] are the array elements accessed in the iterations of the
interval, then we try to remove at least one iteration, say i + 1, such that the following
holds: there exists an array b2 of size 2 obtained by modifying the subarray (a[i], a[i+2])
such that running the loop of P separately on b2 with the initial value of m as its value
at the end of iteration i− 1 of E, instead of a[0], and running the loop of P separately on
the subarray b1 = (a[i], a[i + 1], a[i + 2]) with the same initial value of m as mentioned,
yield identical output values of m. If the executions of P ’s loop on arrays b1 and b2 with
the mentioned initial value of m are respectively E1 and E2, then one can see that E1 is
a “sub-execution” of E, and that “replacing” E1 with E2 yields a new execution E′ of
P ’s loop on a strictly smaller (and potentially different) input array, that would have an
identical eventual output value of the variable m as E has. This is because the value of
m at the end of any iteration of P is completely determined by its value at the end of the
previous iteration and the array element being accessed in the current iteration. Since E2

gives the same output m value as E1, the remainder of the iterations in E beyond those
in E1, would execute “unaware” of the local change made in substituting E2 for E1.

The check for whether such removal of iterations is always possible for any given
execution of the loop of P , is performed by checking the executions of the loop for all
arrays a and initializations of m that come from respective representative sets that are
each small in number. These sets themselves depend on the length k of the interval,
and would be representative in that, the mentioned check for removal of iterations would
succeed for all integer arrays of length k and integer initializations of m if, and only if, they
succeed for the particular arrays and initializations in the representative sets. This is given
that P does only comparisons between elements, and the number of integer arrays of size
k along with a given initialization of m, is “up to isomorphism” of linear orderings on the
array values and the initialization, a fixed function of k. The function is an exponential,
but then the values of k for which the removal check would be attempted would be small,
and the whole check for all representative arrays and initializations, would be performed
symbolically by feeding a suitable FO formula to Z3 to check for satisfiability. Once a k
admitting the removal check is found, we know that any k length interval in any given
execution E of P ’s loop admits an “I/O-preserving” strict reduction. Now given the 1-
1 correspondence between the executions of the loop of P and the models of φax ∧ φP

(Theorem 2.2), the said k would admit a local reduction in any model of αP,A that is

4

sufficiently large, in particular having iteration sort size > 7. Recursively performing the
local reduction, we obtain a small model for αP,A in which all sort sizes would be bounded
by 7 (Theorem 4.1).

The above described method, that is worked out fully for the (min) program P and
(min) assertion A (see [22]), admits an extension to various other programs, going by the
fact that the technical results do not really need the specifics of the program P and as-
sertion A, as they only utilize some structural features of P and A. We present a general
class of programs and assertions that have these structures features. For the assertions,
the structure consists of the logical formulation of the assertion being a universal FO
sentence, that is an FO sentence in which all quantifiers that appear are universal. For
programs, the structural features are captured via a syntactically defined class of pro-
grams that we call Monotone-loop programs without Lookback or Lookahead, or MLL in
short. Intuitively, these are single loop array programs that can contain any fixed (so
non-input dependent) number of read-only arrays (of length determined by the input) and
individual variables, but only a single loop iterator variable that further only increases
monotonically. The values of the individual variables are computed in any iteration by
looking at their values in the previous iteration and the values stored in all the arrays
at the indices whose values equal that of the iterator variable in the current iteration,
and performing only comparisons between the said values. Examples of programs in MLL
include variants of the min program, in particular, relativized versions of it that check
for the minimum in subarrays satisfying given conditions (Figure 3), and the k-th min
program that computes the k-th minimum of a given array for any given k (Figure 4 for
k = 2 and more examples). We go further to show that MLL semantically is a much larger
class, as it subsumes up to equivalence, among other programs, the class of Monotone-loop
programs with Bounded Lookback and Lookahead, or MLL+ in short. These programs
allow for comparisons involving not just the elements of the arrays at locations pointed to
by the iterator variable, but more generally elements of the arrays at bounded distances
from the mentioned locations. Since MLL+ programs can be compiled into equivalent
MLL programs, the small model property for MLL programs (whenever it exists) admits
a transfer to the corresponding MLL+ programs as well. (See Figure 5 for an example
MLL+ program and its equivalent MLL program.)

Organization of the paper: In Section 2, we present the details of the logical formulation
of P and A and also state precisely the correspondence result between models of φax ∧φP

and the executions of P . In Section 3, we present in more detail the overall approach
depicted in Figure 2 that we have described above. Section 4 contains a selection of
the main technical results from the full technical report for this paper in [22]. Section 5
presents MLL and MLL+, and the subsection 5.2 reports some preliminary experiments
that we have performed using the implementations of our approach. We conclude in
Section 6 presenting directions for future work.

2 Logical formulation of the min program and assertion

We assume the reader is familiar with standard notions and notation in the syntax and
semantics of FO [23]. A vocabulary τ is a finite set of relation, function and constant

5

symbols. In this paper, we are concerned only with relational vocabularies that contain
only predicate and constant symbols. All predicate symbols are assumed to have positive
arity. We denote by FO(τ) the set of all FO formulae over τ . A sequence x1, . . . , xn of
variables is written as x̄. A formula φ whose free variables are among x̄, is denoted φ(x̄).
A formula with no free variables is called a sentence. A τ -structure consists of a domain
of elements, along with an interpretation for each predicate of τ as a relation of the same
arity over the domain, and an interpretation for each constant of τ as an element of the
domain. Given a τ -structure M and a sentence φ, we denote by M ⊧ φ that φ is true in
M . All the notions mentioned have natural extension to multi-sorted FO.

We recall the min program and the min assertion as depicted in Figure 1, and present
a logical formulation of it below. The vocabulary that we use is

τ = {≤(2)d ,≤(2)r ,≤(2)v , s
(2)
d , s(2)r , a(2), i(2),m(2),0d,0r, nd, nr}

where the underlined symbols are constants and the rest are binary predicate symbols.
There are 3 sorts associated with τ : the array index sort (D), the iteration sort (R) and
the value sort (V). The signature of a predicate symbol of τ specifies the sorts of all
arguments of the predicate; likewise the signature of a constant symbol specifies the sort
of the symbol. The signatures of the symbols of τ are as below:

sig(≤d) = D ×D sig(sd) = D ×D
sig(≤r) = R ×R sig(sr) = R ×R
sig(≤v) = V × V sig(a) = D × V
sig(i) = R ×D sig(m) = R × V
sig(0d) = D sig(0r) = R

sig(nd) = D sig(nr) = R

Before presenting the logical formulation, let us see intuitively what the symbols are
intended to be interpreted as. The ≤d,≤r and ≤v predicates are intended to represent
linear orders on the sorts D,R and V . The linear order on sort D represents the ordering
of the array indices, that on sort R represents the ordering of the iteration numbers of
the loop, and that on sort V the usual ordering of numbers. The sr and sd predicates are
intended to encode the successor relations of ≤r and ≤d. The constants 0d and nd encode
the minimum and maximum elements of ≤d (observe that n denotes the length of the input
array); likewise 0r and nr encode the minimum and maximum elements of ≤r. Finally, a,m
and i are intended to encode functions with suitable domains and co-domains as follows:
(i) a, that is used to model the array, is a function from sort D to sort V ; (ii) m, that is
used to model the sequence of intermediate min values computed across iterations, is a
function from sort R to sort V ; and (iii) i, that is used to model the location in the array
that is looked at in any given iteration, is a function from sort D to sort V .

The above intended interpretations constitute the axioms for the mentioned predicates.
All our analysis subsequently will bemodulo these axioms, that is, the structures of interest
for our formulae will be those that satisfy these axioms. We now give the details of the
logical formulation of the axioms below.

Remark 2.1. We use a different notation below than in the introduction, but the corre-
spondence is easy to see. So PAx below corresponds to φax, and later PC corresponds to
φP and PAs corresponds to φA.

6

We will use the following as convenient short-hands: x <d y, x >d y, x ≥d y, x <r y, x >r
y, x ≥r y, x <v y, x >v y, x ≥v y,. These are defined in the natural way. For e.g. x <d y ∶=
x ≤d y ∧ x ≠ y and x ≥d y ∶= ¬(x ≤d y) ∨ x = y.

Program axioms

1. Axioms for linear orders and successors: We give below the axioms Ax ∶ LO and
Ax ∶ succ for the linear orders on all the sorts and and successors on all sorts except
V . We provide these axioms Ax ∶LOD and Ax ∶ succD for the index sort, the axioms
Ax ∶LOR and Ax ∶ succR for the iteration sort and the axioms Ax ∶LOV for the value
sort are similar.

Ax ∶LO ∶= Ax ∶LOD ∧ Ax ∶LOV ∧ Ax ∶LOR

Ax ∶succ ∶= Ax ∶succD ∧ Ax ∶succR
Ax ∶LOD ∶= ∀x ∈D (x ≤d x) ⋀

∀x, y ∈D (x ≤d y ∧ y ≤d x)→ x = y ⋀
∀x, y, z ∈D (x ≤d y ∧ y ≤d z)→ x ≤d z ⋀
∀x, y ∈D (x ≤d y ∨ y ≤d x)

Ax ∶succD ∶= ∀x, y ∈D (sd(x, y)↔ ∀z ∈D (z ≤d x ∨ y ≤d z))

2. Axioms for constants: We give the axioms for the constants of signature D; those
for constants of signature R are similar.

Ax ∶const ∶=Ax ∶constD ∧Ax ∶constR
Ax ∶constD ∶=∀x ∈D (0d ≤d x ∧ x ≤d nd)

3. Axioms for array predicates a, i,m: These axioms Ax ∶arra,Ax ∶arri,Ax ∶arrm for a, i,m
resp. assert that each of these predicates is a function. We give below Ax ∶arra; the
others are similar.

Ax ∶arr ∶=Ax ∶arra ∧Ax ∶arrm ∧Ax ∶arri
Ax ∶arra ∶=∀x ∈D ∃y ∈ V a(x, y) ∧ ∀x ∈D∀y, z ∈ V ((a(x, y) ∧ a(x, z))→ y = z)

4. The axioms collectively are denoted as PAx.

PAx ∶= Ax ∶LO ∧Ax ∶succ ∧Ax ∶const ∧Ax ∶arr

Program clauses

We now formulate the min program below. We observe that there are three parts to the
program: the initialization, the loop body which is executed when the loop condition
holds, and the termination of the program that happens when the loop condition does not
hold. Each of these parts is formulated separately below.

7

Initialization: This sentence below corresponds to the initializations “m = a[0];” and
“i = 0;” of the min program. (The ↔ below can be replaced with ← or → given the
program axioms.)

PI ∶= PI1 ∧ PI2

PI1 ∶= i(0r,0d)
PI2 ∶= ∀v1 ∈ V a(0d, v1)↔ m(0r, v1)

Body: The clauses C1 and C2 below resp. correspond to the “if (m > a[i]) m = a[i];”
statement and the implicit “else” condition of the statement. The clause C3 corresponds
to “i++;”. The clause C0 expresses that if the loop condition is satisfied in an iteration,
then that iteration is not the last iteration of the loop (and hence whose position on the
iteration linear order ≤r is less than the maximum nr of the linear order), where by last
iteration we mean the (vacuous) iteration in which the loop condition gets violated.

PB ∶= ∀l1, l2 ∈ R ∀k1, k2 ∈D ∀v1, v2 ∈ V (C0 ∧C1 ∧C2 ∧C3)
C0 ∶= (i(l1, k1) ∧ k1 <d nd)→ l1 <r nr

C1 ∶= (i(l1, k1) ∧ k1 <d nd ∧m(l1, v1) ∧ a(k1, v2) ∧ sr(l1, l2) ∧ v1 >v v2)→ m(l2, v2)
C2 ∶= (i(l1, k1) ∧ k1 <d nd ∧m(l1, v1) ∧ a(k1, v2) ∧ sr(l1, l2) ∧ v1 ≤v v2)→ m(l2, v1)
C3 ∶= (i(l1, k1) ∧ k1 <d nd ∧ sr(l1, l2) ∧ sd(k1, k2))→ i(l2, k2)

Termination: The formula below expresses that if in an iteration the loop condition gets
violated, then that iteration is the last iteration of the loop.

PT ∶= ∀l ∈ R ∀k ∈D (i(l, k) ∧ ¬(k <d nd))→ l = nr

Overall program clauses: Overall then, the FO sentence for the program is just the con-
junction of the sentences for the initialization, the loop body and the program termination
as seen above.

PC ∶= PI ∧ PB ∧ PT

Assertion:

We now formulate the min assertion as shown in Figure 1. The assertion states that the
final computed value of the variable m is no more than the value at any array index. This
can be formalized as PAs below. The negation of PAs, which will be involved in our analysis
in the subsequent sections, is given after. (The “∶=” in the formula for ¬PAs is a bit of
an abuse of notation; it should be “↔” strictly speaking, but we treat the equivalence as
equality for later convenience.)

PAs ∶= ∀ks ∈D ∀vt, vs ∈ V
(0d ≤d ks ∧ ks <d nd ∧ m(nr, vt) ∧ a(ks, vs))→ vt ≤v vs

¬PAs ∶= ∃ks ∈D ∃vt, vs ∈ V
(0d ≤d ks ∧ ks <d nd ∧ m(nr, vt) ∧ a(ks, vs) ∧ vs <v vt)

8

The following theorem now shows that the logical formulation above “captures” the
min program and assertion in a precise sense. The proof is not difficult to see, hence we
skip it.

Theorem 2.2. The following are true:

1. Let a[n] be a given array of length n. Let m[n], resp. i[n], be the array of interme-
diate values of the variable m, resp. i, computed across the iterations of the loop in
the min program, when the loop is executed on a[n] and a given initialization m[0]
of m. Then there exists, up to isomorphism, a unique τ -structure M+ such that: (i)
the interpretations of the predicates a,m and i contained in M+ resp. represent the
arrays a[n],m[n] and i[n]; and (ii) M+ ⊧ PAx ∧PI1 ∧PB ∧PT. In particular, when
the initialization m[0] of m is a[0], then M+ ⊧ PAx ∧ PC.

2. Let M be a τ -structure such that M ⊧ PAx∧PI1∧PB∧PT. Let the interpretations of
the predicates a,m and i contained in M resp. represent the arrays a+[n],m+[n] and
i+[n]. Then m+[n], resp. i+[n], is the array of intermediate values of the variable m,
resp. i, computed across the iterations of the loop in the min program, when the loop
is executed on a+[n] and the initialization m+[0] of m. In particular, if M ⊧ PAx∧PC,
then it additionally holds that the initialization m+[0] of m is equal to a+[0].

Remark 2.3. The sequence (a[l],m[l], i[l])0≤l<n can be seen as an abstract representation
of the (unique) execution of the min program on the array a[n]. Clearly the sequence de-
termines the said execution and vice-versa. Theorem 2.2 can then be seen to state that the
execution of the min program on any given input array, determines up to isomorphism,
a unique τ -structure that models PAx ∧ PC, and that encodes the mentioned abstract
representation of the execution, in the interpretations of its predicates corresponding to
the min program variables. And conversely, any τ -structure that models PAx ∧ PC, de-
termines (uniquely) the abstract representation of the execution of the min program, on
the particular array encoded in the structure, that is represented by the interpretation of
the predicate of τ corresponding to the array variable. In short, the models of PAx ∧ PC
are (up to isomorphism) in 1-1 correspondence with (the abstract representations of) the
executions of the min program for arbitrary inputs.

3 The Overall Approach

Our overall approach to showing the small model property for programs and assertions is
as shown in Figure 2. We describe this briefly here in the specific case of the min program
and assertion. The overall approach instantiates similarly for the more general setting we
consider in Section 5. There are 4 stages to the entire analysis as explained below. (We
again switch back to our notation used in the introduction, namely φax, φP , and φA for the
axioms and the logical formulations of P and A. For the min program, these correspond
respectively to PAx,PC and PAs as seen in Section 2.)

1. In Stage I, the input program P and assertion A are taken as input and converted
to their logical formulations φP and φA. Along with these, the set φax of axioms is
also generated. These three formulae are passed to the next stage.

9

P,A ϕP , ϕA

k

Yes

No

Return “Unknown”

Sat

Unsatf (k)
I III IVII

Return “No”
with proof P1

Return “Yes”
with proof P2

ϕax

Figure 2: A block diagram of the overall approach. In Stage I, the input program P and
assertion A are converted resp. to logical formulae φP and φA; also a small set φax of
axioms is generated. In Stage II, a procedure is executed that attempts to find a k that
allows for an output-preserving “removal of iterations” in executions of P on arrays of
size k and initializations that come from respective representative sets. If such a k isn’t
found within threshold time, Stage II returns “Unknown”, else the found k is passed on
to Stage III. In Stage III, a number f(k) is calculated that serves as a bound on the sizes
of small models of φax ∧ φP ∧ ¬φA. Stage IV consists of finding a small model for the
mentioned formula using Z3. Such a model if found serves to witness the violation of A
by P , otherwise A provably holds under P .

2. In Stage II, for a fixed number k that is incremented starting with the value 2, we
symbolically execute P on all input arrays a of length at most k and all initializations
min of the variable m. For each of these executions E, we try to “remove some
iterations” along with the array elements accessed in these iterations, modifying the
resulting array suitably to obtain an array a′ such that the execution E′ of P on
a′ and the same initialization min of m, yields the same output mout as produced
earlier by E. Note that this is always possible to do for any given execution via some
suitable combinatorial reasoning.

The only issue the reader might see here is in dealing with the “for each of these
executions” clause that would require considering all possible input arrays a and
initializations min of m, which are infinite in number. It is here that we utilize the
fact that the min program (and more generally any program of MLL described in
Section 5) involves only comparisons between values stored in the variables of the
program. Since the number of values that are compared in an execution E of P on
a given array a of length k and a given initialization min of m, is at most k + 1, the
comparisons can be simulated on simply the set {0,1, . . . , k}. This is given that up
to isomorphism, there is just one linear order of length k + 1, and that the number
of linear orders on k + 1 elements that are themselves labeled using the elements of
another linearly ordered set of size k + 1, is at most (k + 1)(k+1).2.
The above mentioned (output-preserving) removal of iterations from executions E
can be then checked on only representative sets of arrays of size k and initializa-
tions of m, those in which the arrays and initializations take on values from the set

2Another way of stating this is that the number of structures that consist of a set of size k+1 equipped
with two linear orders on the set, is up to isomorphism, at most (k + 1)(k+1).

10

{0, . . . , k}. This check in turn now can be formulated as the SAT problem for a suit-
ably constructed FO formula θk. If the SAT solver (Z3) returns SAT on θk, then it
corresponds to the iteration removal check failing for k, in which case we increment
the value of k to k+1, and ask for the satisfiability of θk+1. This process is continued
until either Z3 returns UNSAT for some value k0 of k, or a timeout is reached. In
the latter case, we return ”Unknown” as the output of our overall analysis, and in
the former case, the value k0 is passed on to Stage III of our analysis. We note that
k0 admits removal of iterations for (the executions of the min program’s loop on) all
(of the infinitely many) arrays of size k and initializations of m.

3. Stage III of the overall approach involves a theoretical analysis that takes in the value
of k output from Stage II (if there is such a value), and outputs a suitable value f(k)
which represents a bound on the small model sizes for the formula αP,A ∶= φax∧φP ∧
¬φA. More precisely, the analysis formulates a reduction theorem (Theorem 4.2)
that states that if there is a model M of αP,A whose iteration sort domain is of
size greater than f(k), then there is another model M ′ of αP,A whose iteration sort
domain is strictly smaller than that of M . Briefly the model M ′ is produced from
M via a local reduction as explained below.

A suitable substructureMc ofM is first chosen that is a model of φax∧φP , and whose
iteration sort size is k. The particular features of our logical formulation ensure that
we will always be able to obtain such a substructure. Using Theorem 2.2, this
substructure corresponds to the execution of P on some array b of size k and some
initialization min of m. Since k admits a removal of iterations, there is another
array b′ of size < k such that with min as the initialization of m, the program P
outputs the same m value as it did on b. We re-translate b′ to a structure M ′

c using
Theorem 2.2, and substitute it for Mc in M to obtain the structure M ′. We now use
the properties of our logical formulation in conjunction with classical preservation
theorems from model theory to show that M ′ is a model of αP,A.

As a consequence, recursively applying the above reduction theorem to M ′, we get a
model M∗ of αP,A whose iteration sort domain is of size at most f(k). It follows then
that for the min program (and more generally for the programs of MLL), the index
sort domain also has size ≤ f(k), and (consequently) the value sort domain is of size
≤ c ⋅ f(k) for a constant c that is determined by the program (it is in particular the
total number of array and individual variables of the program). Since all domains
of M∗ are bounded, M∗ is a small model of αP,A.

4. Finally, we have Stage IV, that takes as input the value f(k) output by Stage III,
and checks for the satisfiability of αP,A in small structures, that is structures whose
iteration and index sort domains have sizes ≤ f(k) and value sort domain has size
≤ c⋅f(k) for c as aforementioned. The check is again done using Z3. In the event that
Z3 returns “SAT”, and hence also a satisfying model M∗, we utilize Theorem 2.2 to
translate M∗ to an array a∗ and (a suitably abstract representation of) the execution
E∗ of P on a∗ that witnesses the violation of the assertion A. The pair (a∗,E∗) can
be taken as the proof P1 in Figure 2.

In the event that Z3 returns “UNSAT”, it is immediate that there is no model of
αP,A whose iteration sort domain has size at most f(k). However, from the reduction

11

theorem above, it follows that there is no (finite) model for αP,A. This is because,
taken in contrapositive form, the reduction theorem says that for all l ≥ f(k), if
there is no model of αP,A whose iteration sort domain has size at most l, then there
is also no model of αP,A whose iteration sort domain has size at most l+1. Thus the
reduction theorem provides an induction on l where the base case of the induction
is the case when l = f(k). We see that Z3 returning ‘UNSAT” on αP,A can then be
seen as Z3 proving the base case of the mentioned induction. It follows then that
for all l, there is no model of αP,A whose iteration sort domain has size at most l; in
other words, αP,A has no finite model. As a result, in conjunction with Theorem 2.2,
it holds that there is no input array a for which the finite execution of P on a leads
to a violation of assertion A, establishing that A always holds under P .

The proof P2 referred to in Figure 2 can then be returned as a pair consisting of the
unsat core of αP,A (over small models) along with the proof of the reduction theorem
in contrapositive form, written as say a program in Coq. (This is of course just a
theoretical proposal at this stage.)

4 Technical results

We recall the min logical formulation from Section 2. For a τ -structure M , let DM ,RM

and V M be resp. the domains of M for sorts D,R and V . Define ∣M ∣D, ∣M ∣R, ∣M ∣V
to be the sizes of the sets DM ,RM and V M . The size of M , denoted ∣M ∣, is simply
∣M ∣R + ∣M ∣D + ∣M ∣V . Our main result stated below shows the small model property for the
logical formulation of the min program and assertion.

Theorem 4.1 (Small models for PAx∧PC∧¬PAs3). If there is a model for PAx∧PC∧¬PAs,
then there is a model M∗ of PAx ∧ PC ∧ ¬PAs such that ∣M∗∣R, ∣M∗∣D, ∣M∗∣V ≤ 7.

Thus to check if P satisfies assertion A, we just need to check for the satisfiability
of PAx ∧ PC ∧ ¬PAs in structures whose domains sizes are bounded by 7 as discussed
in the previous section. The proof of the small model theorem above goes via showing
the following two results, the first a reduction theorem for PAx ∧ PC ∧ ¬PAs, and the
second an equal-sorts lemma for PAx∧PC. The reduction theorem is the technical core of
Theorem 4.1.

Theorem 4.2 (Reduction of large models of PAx ∧ PC ∧ ¬PAs). Let M be a model of
PAx ∧ PC ∧ ¬PAs. If ∣M ∣R > 7, then there exists a model M ′ of PAx ∧ PC ∧ ¬PAs such that
∣M ′∣R < ∣M ∣R.

Lemma 4.3 (Equality of sizes of the iteration and index sorts in models of PAx∧PC). In
any model M of PAx ∧ PC, it holds that ∣M ∣D = ∣M ∣R.

Using the reduction theorem and equal-sorts lemma, we can prove Theorem 4.1 as
below.

3The upper bound of 7 can be lowered further, but that would need a custom handling of some corner
cases.

12

Proof of Theorem 4.1. Let M be a model of PAx ∧ PC ∧ ¬PAs. If ∣M ∣R ≤ 7, then we take
M∗ =M ; else by recursively applying Theorem 4.2 toM , we eventually obtain a modelM∗

of PAx∧PC∧¬PAs such that ∣M∗∣R ≤ 7. Since in either case M∗ models PAx∧PC∧¬PAs,
we get by Lemma 4.3 that ∣M∗∣D = ∣M∗∣R ≤ 7. Since:

• a and m are interpreted as (the graphs of) functions in M∗ (as Ax ∶arr is a conjunct
of PAx), and

• range(mM+) ⊆ range(aM+) (as PB is a conjunct of PC), where range(mM+) and
range(aM+) resp. denote the ranges of the functions interpreting m and a,

it follows that there exists V1 ⊆ V M∗

s.t.:

∣V1∣ ≤ 7; and range(mM+), range(aM+) ⊆ V1

. Then w.l.o.g. V M∗

can be taken to be V1 itself, whereby M∗ is indeed as desired.

4.1 Regrouping the program clauses

To simplify our analysis to be able to prove Theorem 4.2 and Lemma 4.3, and simultane-
ously to cast our proof in a form that can generalize to other programs, we regroup the
individual components of the program clauses. Towards this, we first observe that there
are two kinds of variables in the input program – those that take on as values the indices of
arrays, and those that constitute the rest. The variables of the first kind are i, n, and those
of the second are a,m. Correspondingly, there are two kinds of elements in τ – those in-
volved in the “loop infrastructure”, and those involved in the “actual computations” in the
loop. The elements of the former kind constitute the set τLI = {≤d,≤r, sr, sd,0d,0r, nd, nr, i},
and those of the latter constitute τAC = {≤d,≤v, sr, i, a,m,0d,0r, nd}. So τ = τLI ∪ τAC. Our
regrouping of the program clauses is based on gathering together all components that ex-
clusively deal with the loop infrastructure in one group that we denote LI, and gathering
together the components that deal with the actual computations in the loop in another
group that we denote AC. The program axioms and the assert clause are in groups of their
own resp. again called PAx and ¬PAs.

13

PAx ∶= Ax ∶LO ∧Ax ∶succ ∧Ax ∶const ∧Ax ∶arr

LI ∶= LI ∶ Init ∧ LI ∶Body ∧ LI ∶Term
LI ∶ Init ∶= i(0r,0d)

LI ∶Body ∶= ∀l1, l2 ∈ R ∀k1, k2 ∈D (LIB ∶1 ∧ LIB ∶2) where

LIB ∶1 ∶= (i(l1, k1) ∧ k1 <d nd)→ l1 <r nr

LIB ∶2 ∶= (i(l1, k1) ∧ k1 <d nd ∧ sr(l1, l2) ∧ sd(k1, k2))→ i(l2, k2)
LI ∶Term ∶= ∀l ∈ R ∀k ∈D (i(l, k) ∧ ¬(k <d nd))→ l = nr

AC ∶= AC ∶ Init ∧AC ∶Body
AC ∶ Init ∶= ∀v1 ∈ V a(0d, v1)→ m(0r, v1)

AC ∶Body ∶= ∀l1, l2 ∈ R ∀k1, k2 ∈D ∀v1, v2 ∈ V (ACB ∶1 ∧ACB ∶2)
ACB ∶1 ∶= (i(l1, k1) ∧ k1 <d nd ∧m(l1, v1) ∧ a(k1, v2) ∧ sr(l1, l2) ∧ v1 >v v2)

→ m(l2, v2)
ACB ∶2 ∶= (i(l1, k1) ∧ k1 <d nd ∧m(l1, v1) ∧ a(k1, v2) ∧ sr(l1, l2) ∧ v1 ≤v v2)

→ m(l2, v1)

¬PAs ∶= ∃ks ∈D ∃vt, vs ∈ V
(0d ≤d ks ∧ ks <d nd ∧
m(nr, vt) ∧ a(ks, vs) ∧ vs <v vt)

Observe that LI is an FO[τLI] sentence and AC is an FO[τAC] sentence; PAx and ¬PAs
are FO[τ] sentences.

The following lemma is easy to see.

Lemma 4.4. The sentences PC and LI ∧ AC are equivalent over all τ -structures. Hence,
so are PAx ∧ PC ∧ ¬PAs and PAx ∧ LI ∧AC ∧ ¬PAs.

Given Lemma 4.4, the proof of Lemma 4.3 is obtained by showing a structural char-
acterization of the models of PAx ∧ LI. Again Lemma 4.4 is used in proving Theorem 4.2
by proving the same statement as in Theorem 4.2, with PAx ∧ PC ∧ ¬PAs replaced with
PAx ∧ LI ∧AC ∧ ¬PAs. The details can be found in [22].

5 The class MLL

We define a class of programs that generalizes the min program and to which we believe (cf.
Remark 5.1) our analyses for the min program generalizes, when the logical formulations
of the assertions are in universal FO. We call this class Monotone-loop programs without
Lookback or Lookahead, or MLL in short. The intuitive description of any program in this

14

class is as below. Below SSA denotes “Single Static Assignment”. It is known that SSA
is a normal form (semantics preserving) for any program.

// Individual variable and array declarations.

// Initializations that are either of the form x = const or x = y

// where x and y are either individual variables or array elements.

// A loop-free set of statements that could involve conditions.

i := 0;

while (i < n)

{

// The main loop body which is a sequence

// of statements in SSA form that could

// involve conditions and that satisfy the

// following constraints:

// a. feature only i as index variable

// b. do not modify i

// c. use only comparison as an operator

// d. refer only to a[i] for an array a

// if they at all refer to any element

// of a

// e. Assignment statements appear only

// at the ends of branches of the

// control flow graph of the main

// loop body.

i++;

}

We now formalize the above intuitive description. We give below the syntax of the dec-
larations, the initializations, the loop-free body, and the loop body of MLL programs.
Overall an MLL program has the following syntax.

mllprog → decl allinits loopfreebody loopsyntax

MLL declarations syntax: The syntax of the declarations is as below. Below n is an
input variable of type int.

decl → int i, varlist

varlist → indvar ∣ arrvar
indvar → m1 ∣m2 ∣ . . .
arrvar → arrvarname[n]
arrvarname → a1 ∣ a2 ∣ . . .

15

MLL initialization syntax: Defined below is the syntax for initializations in MLL. Let
Constants be a finite set of integers.

allinits → i = 0; ∣ indivinit; allinits
indivinit → indvarinit ∣ arrvarinit
indvarinit → indvar = const ∣ indvar = indvar ∣

indvar = arrvarname[const]
arrvarinit → arrvarname[const] = const ∣

arrvarname[const] = indvar ∣
arrvarname[const] = arrvarname[const]

const → c (for c ∈ Constants)

MLL loop body syntax: The grammar below defines the syntax of the loop body.
Below “ϵ” denotes the empty string.

loopsyntax → whilecond { mainloopbody iteratorinc }
whilecond → while (i < n)
iteratorinc → i++;

mainloopbody → condstmts assignstmts

condstmts → ϵ ∣ singlecondstmt condstmts

singlecondstmt → ifthenstmt ∣ ifthenelsestmt

ifthenstmt → if (cond) { mainloopbody } ∣
if (cond) singleassignstmt

ifthenelsestmt → ifthenstmt else { mainloopbody }
ifthenstmt else singleassignstmt

cond → atomcond ∣
cond ∧ cond ∣ cond ∨ cond ∣ !cond

atomcond → loopvar ⍟ loopvar (for ⍟ ∈ {==,<,≤,>,≥})
loopvar → indvar ∣ arrvarname[i]
assignstmts → ϵ ∣ singleassignstmt assignstmts

singleassignstmt → loopvar = loopvar;

MLL loop-free body syntax: The grammar below defines the syntax of the loop-
free body. Below condstmts and assignstmts are given (inductively) by the same set of
production rules as in the loop body syntax above. The only change is in the production
rule for loopvar which is as below. The production rule for const is as given in the grammar
for initializations above.

loopfreebody → condstmts assignstmts

loopvar → indvar ∣ arrvarname[const]

16

We present below examples of programs in MLL. Figure 3 shows two “relativized” min
programs that compute the minimum of subarrays of the given array satisfying certain
“quantifier-free” properties. Figure 4 shows the “second-min” program that computes the
second minimum in a given array, if it exists, a search program that searches for a given
element in a given array, and the copy program that copies a given array into another.

One can use the mentioned programs in conjunction to reason about more complex
programs. For example, another implementation of second-min can be obtained as follows.
We first run themin program on a given array a; letm be the computed minimum. We then
pass m as the value of the parameter p in the Rel-min-I program and run this program
on array a. The value computed by the Rel-min-I program would then be the second
minimum of a (if a contains at least two distinct values). Since we have verified the min
program for its intended behaviour, and also claim that (we explain this in Section 5.2)
Rel-min-I program is also correct for its intended behaviour, the composite program that
we have just described for second-min would also be correct for its intended behaviour.

Relmin-I(n, a[n], p):

+++++++++++++++++++++

m = a[0];

i = 0;

while (i < n)

{

if (m > a[i] && a[i] != p)

m = a[i];

i++;

}

assert(A1);

Relmin-II(n, a[n], p[n]):

++++++++++++++++++++++++++

m = a[0];

i = 0;

while (i < n)

{

if (p[i] == 1) {

if (m > a[i])

m = a[i];

}

i++;

}

assert(A2);

A1 =∀j(j ≥ 0 ∧ j < n ∧ a[j] ≠ p)→m ≤ a[j])
A2 =∀j(j ≥ 0 ∧ j < n ∧ p[j] = 1)→m ≤ a[j])

Figure 3: Two “relativized” min programs. The program on the left computes the mini-
mum of the subarray of a consisting of elements that are not equal to input value p. The
program on the right computes the minimum of the subarray of a that is not “masked by”
by the input array p of equal length. Both programs can be seen to be in MLL.

We now describe why our analysis for the min program and assertion might generalize
to any program of MLL, in the remark below.

Remark 5.1. The reason why we believe our analysis for the min program and assertion
generalizes to all MLL programs is given the observations about the proof for min as given
in [22]. (These are marked in blue in the report.) All the programs of MLL can be seen to
satisfy the conditions identified in these observations. The conditions either are directly
on the structure of the statements in the program, or are on the structure of the logical
formulations of the statements. Both of these are very easy to check for any MLL program.

17

Since its is only these structural conditions that make the proof for the min program go
through, they should allow for the proof to lift to any program satisfying the structural
conditions, in particular programs of MLL.

5.1 Allowing for bounded lookback and lookahead

The syntax of MLL while it allows for expressing interesting programs, might seem restric-
tive given the constraint of not having any lookback or lookahead. Many more interesting
programs come into view when some lookback or lookahead is allowed. An example is the
sortedness program depicted in Figure 5 that checks if a given array is sorted; the natural
formulation of this program uses a lookback of 1. We therefore define the extension of
MLL that we call Monotone-loop programs with Bounded Lookback and Lookahead, that
we denote simply as MLL+. The syntax of MLL+ is identical to MLL except for the
condition that in any iteration i, for any array a, not just can a[i] be accessed, but also
a[i− r] and a[i+ r] for a number r is that upper bounded by a given constant. Therefore
the syntax of the loop body of MLL+ programs is identical to that above for MLL, except
for the production rule for loopvar which is modified as

loopvar → indvar ∣ arrvarname[i] ∣ arrvarname[i − r] ∣ arrvarname[i + r]

where r is a number that is at most the given constant. The syntax for declarations and
initializations are identical to those for MLL.

We now reason how MLL+ programs can be compiled into MLL programs. The
bounded lookback in any MLL+ program can be implemented using additional variables
that store the array values at the indices up to the lookback. For instance, for a lookback
a[i − r], we introduce variables m1, . . . ,mr such that mj would store the value of a[i − j]
for j ∈ [1, r]. These variables can be updated at the end of each loop by “shifting their
values” suitably. Then a[i − r] can be referred to without any lookback by using mr in
its place. On the other hand, bounded lookahead can be implemented by unrolling the
loop till the maximum lookahead to a loop-free program which would only refer to fixed
(constant) indices in the arrays. Then an affine transformation of the form i→ i− s where
s is the maximum lookahead would bring the “remainder” of the loop into the class of
bounded lookback loops which then can be transformed into loops without lookback as
explained above. Figure 5 presents an example.

5.2 Experiments

We ran some preliminary experiments using our (currently limited) implementation of our
methods, on 4 programs: min as in Figure 1, its two relativized versions as in Figure 3
and the search program of Figure 4. We were able to experimentally obtain the values of
k for which the “removal of iterations” that takes place in Stage II of our overall approach
goes through (cf. Section 3). Using this, we computed the small model bounds f(k) for
these programs for the assertions that capture their intended behaviour (the assertions
are defined in the figures mentioned). The table below presents all these values along with
the time taken to compute k.

18

S.No. Program Assertion k f(k) Time (sec)

1 Min Min 3 7 0.05613589286804199

2 Rel-Min-1 Rel-Min-1 4 9 0.058405160903930664

3 Rel-Min-2 Rel-Min-2 4 9 0.15024709701538086

4 Search Search 4 9 0.043929815292358

Table 1: A table showing the values of k computed using Z3, that admit “removal of
iterations” in the corresponding programs (cf. Section 3). Using the k’s, the values f(k)
are computed (theoretically) that serve as the small model bounds for the corresponding
programs and their natural assertions.

Second-min(n, a[n]):

+++++++++++++++++++

m1 = a[0];

m2 = a[0];

i = 0;

while (i < n)

{

if (a[i] < m1)

{

m2 = m1;

m1 = a[i];

}

else if ((m1 == m2 &&

m2 < a[i]) ||

(m1 < a[i] &&

a[i] < m2))

{

m2 = a[i];

}

i++;

}

assert(A3);

Search(n, a[n], p):

+++++++++++++++++++

f = 0;

i = 0;

while (i < n)

{

if (a[i] == p && f != 1)

f = 1;

i++;

}

assert(A4);

CopyArray(n, a[n], b[n]):

++++++++++++++++++++++++

i = 0;

while (i < n)

{

b[i] = a[i];

i++;

}

assert(A5);

assert();

A3 =(∀j1∀j2 ((j1 ≥ 0 ∧ j1 < n) ∧ (j2 ≥ 0 ∧ j2 < n))→ a[j1] = a[j2]) ∨
(∀j (j ≥ 0 ∧ j < n)→ (x < a[j] ∧ y ≤ a[j]) ∨ (x = a[j] ∧ x < y))

A4 =∀j(j ≥ 0 ∧ j < n ∧ a[j] = p)→ f = 1
A5 =∀j(j ≥ 0 ∧ j < n)→ b[j] = a[j]

Figure 4: On the left is a program computing the second minimum of a given array a (if
there are at least two distinct elements in the array. On the right are two programs, one
searching for a given number p in array a, and the other copying a given array b in array
a. All these programs can be seen to be in MLL.

19

Sortedness-I(n, a[n]):

+++++++++++++++++++++

sorted = 1;

i = 1;

while(i < n)

{

if (sorted != 0 &&

a[i] < a[i-1])

sorted = 0;

}

}

i++;

}

assert(A5);

Sortedness-II(n, a[n]):

+++++++++++++++++++++++

sorted = 1;

m = a[0];

i = 0;

while(i < n)

{

if (sorted != 0 && i != 0)

{

if (a[i] < m)

sorted = 0;

}

m = a[i];

i++;

}

assert(A5);

Figure 5: Two programs checking if a given array a is sorted. The program on the left
is not in MLL but is in MLL+. This program can be algorithmically transformed to the
equivalent (with respect to computation of the ‘sorted’ variable) program on the right
which is in MLL.

6 Conclusion and Future Work

In this work, we have shown that a given piece of code that includes an assertion can be
translated to a multi-sorted first order logic formula that can then be analysed automat-
ically to check if it enjoys a small model property. We focused on the particular case of
the min program that computes the minimum of a given array, and the min assertion that
states that the value computed by the program is the minimum of the given array. We
showed that the formulae corresponding the min program and assertion have small models
whose sort sizes are bounded by 7. Consequently, a bounded model checker or SAT solver
can be used to check if the program is correct with respect to the assertion. We have also
presented a syntactic class of programs and assertions for which we believe our approach
can be used to show that the small model property holds (if it does hold), and provided
examples of interesting programs that belong to the class. Our proof technique involves
showing that for any large model of the logical formulation of the given program and
assertion, a small part of the model that represents a small number of iterations of the
loop of the program, can be removed, and other parts of the model can be adjusted to get
another model of the formulation that is smaller in size. This operation can be applied
repeatedly to get a small model whose size can be determined algorithmically.

Although our technique has been shown to work for the min program, we have not
yet established rigorously that it also works for our syntactic class of programs which
are structurally close to the min program, though we believe this strongly. We would
therefore like to prove this as a part of our future work. Beyond our syntactic class,

20

we believe our technique can be extended to larger classes of programs, those that use
interpreted operators, such as those in arithmetic. Again, we would like to extend our
work to other classes of programs, particularly ones that modify the given input array
(that currently we assume to be read-only), like the partition function of quicksort. These
programs present new challenges that we would like to address as part of our future work.

References

[1] Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1

[2] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min´e, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36377-7

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min´e, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of
the PLDI 2003, pp. 196–207. ACM, New York (2003)

[4] Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

[5] Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 40

[6] Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 40

[7] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pp. 238–252. ACM, New York (1977)

[8] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: SIGPLAN Not, vol. 46, no. 1, pp.
105–118, January 2011

[9] Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6 14

21

[10] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Pro-
ceedings of the POPL 2002, pp. 191–202. ACM, New York (2002)

[11] Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: SIGPLAN Not. vol. 40, no. 1, pp. 338–350, January 2005

[12] Halbwachs, N., P´eron, M.: Discovering properties about arrays in simple programs.
In: SIGPLAN Not, vol. 43, no. 6, pp. 339–348, June 2008

[13] Jana, A., Khedker, U.P., Datar, A., Venkatesh, R., Niyas, C.: Scaling bounded
model checking by transforming programs with arrays. In: Hermenegildo, M.V.,
Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 275–292. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 16

[14] Monniaux, D., Alberti, F.: A simple abstraction of arrays and maps by program
translation. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 217–234.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 13

[15] Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free
Horn clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 18

[16] Kumar, Shrawan, Amitabha Sanyal, and Uday P. Khedker. ”Value slice: A new
slicing concept for scalable property checking.” Tools and Algorithms for the Con-
struction and Analysis of Systems: 21st International Conference, TACAS 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. Springer Berlin
Heidelberg, 2015.

[17] Kumar, Shrawan, et al. ”Property checking array programs using loop shrinking.”
Tools and Algorithms for the Construction and Analysis of Systems: 24th Interna-
tional Conference, TACAS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Part I 24. Springer International Publishing, 2018.

[18] Börger, Egon, Erich Grädel, and Yuri Gurevich. The classical decision problem.
Springer Science & Business Media, 2001.

[19] Turing, Alan Mathison. ”On computable numbers, with an application to the
Entscheidungsproblem.” J. of Math 58.345-363 (1936): 5

[20] Trakhtenbrot, Boris (1950). ”The Impossibility of an Algorithm for the Decidabil-
ity Problem on Finite Classes”. Proceedings of the USSR Academy of Sciences (in
Russian). 70 (4): 569–572.

[21] Löwenheim, Leopold (1915), ”Über Möglichkeiten im Relativkalkül” , Mathematis-
che Annalen, 76 (4): 447–470, doi:10.1007/BF01458217, ISSN 0025-5831, S2CID
116581304

22

[22] Nakshatra Gupta, Prajkta Kodavade, Shrawan Kumar, Abhisekh Sankaran, Ak-
shatha Shenoy, R. Venkatesh. Verifying the min program using small models. Tech-
nical report, September 2023.

[23] Libkin, Leonid. Elements of finite model theory. Vol. 41. Heidelberg: springer, 2004.

23

	Introduction
	Logical formulation of the min program and assertion
	The Overall Approach
	Technical results
	Regrouping the program clauses

	The class MLL
	Allowing for bounded lookback and lookahead
	Experiments

	Conclusion and Future Work

