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The model checking problem

Question (MC(C,L))

Let C be a class of finite structures and L a logic like FO,MSO,
etc. Given a structure A ∈ C and a sentence ϕ ∈ L, check
(algorithmically) if A |= ϕ.

Decidable –

FO: O(n |ϕ|) where n = |A|
MSO: O(2n·|ϕ|)

The above is essentially the best we know so far: model
checking FO/MSO over the set-structure A = ({1, 2}) is
already PSPACE-complete (reduction from QBF).
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A parameterized view of MC(C,L)

A fixed parameter tractable (FPT) algorithm for a problem
having parameters k1, . . . , kr etc. is an algorithm solving the
problem in time f (k1, . . . , kr ) · nO(1) where n is the size of the
input and f : Nr → N is a computable function.

E.g. Minimum vertex cover is NP-complete but has an FPT
algorithm.

Question (MC(C,L))

Let C be a class of finite structures and L a logic like FO,MSO,
etc. Given a structure A ∈ C and a sentence ϕ ∈ L, is there an
FPT algorithm for MC(C,L) where |ϕ| is the parameter?
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E.g. Minimum vertex cover is NP-complete but has an FPT
algorithm.

Question (MC(C,L))

Let C be a class of finite structures and L a logic like FO,MSO,
etc. Given a structure A ∈ C and a sentence ϕ ∈ L, is there an
FPT algorithm for MC(C,L) where |ϕ| and some structural
aspects of the structures of C, are parameters?
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A parameterized view of MC(C,L)

A fixed parameter tractable (FPT) algorithm for a problem
having parameters k1, . . . , kr etc. is an algorithm solving the
problem in time f (k1, . . . , kr ) · nO(1) where n is the size of the
input and f : Nr → N is a computable function.

E.g. Minimum vertex cover is NP-complete but has an FPT
algorithm.

Question (Algorithmic metatheorem for MC(C,L))

Let C be a class of finite structures and L a logic like FO,MSO,
etc. Given a structure A ∈ C and a sentence ϕ ∈ L, is there an
FPT algorithm for MC(C,L) where |ϕ| and some structural
parameters of the structures of C, are parameters?
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Talk outline

We look at various classes of structures that admit algorithmic
metatheorems for MC(C,L) and give the intuitive ideas for the
techniques used.

Structures Techniques

Posets Automata

Graphs Feferman-Vaught composition

Locality of FO
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Structures: Posets

Technique: Automata

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran



The case of words

Let Binary-words = words over {0, 1} and L = MSO.
MC(Binary-words,MSO): For w ∈ Binary-words and ϕ ∈ L,

check if w |= ϕ.
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The case of words

Let Binary-words = words over {0, 1} and L = MSO.
MC(Binary-words,MSO): For w ∈ Binary-words and ϕ ∈ L,

check if w |= ϕ.

By the Büchi-Elgot-Trakhtenbrot theorem, there is an
algorithm translating ϕ into a finite automaton A such that
L(A) = word models of ϕ.

Model checking algorithm: Convert ϕ into A and run A on w !

Running time: f (ϕ) + |w | where f (ϕ) is the (computable)
time taken in converting ϕ to A.
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The case of words

Let Binary-words = words over {0, 1} and L = MSO.
MC(Binary-words,MSO): For w ∈ Binary-words and ϕ ∈ L,

check if w |= ϕ.

Theorem. (Büchi-Elgot-Traktenbrot, 1960s [3])

The problem MC(Binary-words,MSO) has a linear time FPT
algorithm with the size of the MSO sentence as the parameter.
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The case of words

Let Binary-words = words over {0, 1} and L = MSO.
MC(Binary-words,MSO): For w ∈ Binary-words and ϕ ∈ L,

check if w |= ϕ.

Theorem. (Büchi-Elgot-Traktenbrot, 1960s [3]; Frick-Grohe,
2004 [8])

The problem MC(Binary-words,MSO) has a linear time FPT
algorithm with the size of the MSO sentence as the parameter.
The dependence on the parameter is non-elementary.
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Trees, nested words and traces

Similar linear time algorithmic metatheorems for
ordered/ranked trees, nested words and traces.

This is because there exists a Büchi-Elgot-Traktenbrot-like
theorem for

ordered/ranked trees: in terms of tree automata (Rabin,
1967 [12])
nested words: in terms of nested word automata
(Alur-Madhusudan, 2009 [1])
traces: in terms of Zielonka automata (Zielonka, 1987 [14])

The parameter dependence is again non-elementary as words
are special cases of the above structures.
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Structures: Graphs

Technique: Feferman-Vaught composition
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Cographs

Generated from point graphs using disjoint union and join.

G(G1 tG2) =

G1 = G2 =

Cograph G and its cotree tGdisjoint union = t; join = ./

(G1 ./ G2) =
tG

./

t

b c

./ a d

e f

./

t

b a f

c d e
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MSO[m]-similarity of graphs

We say graphs G and H are MSO[m]-similar, denoted
G ≡m H , if no MSO sentence having m quantifiers
distinguishes G and H .

≡2

A B
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MSO[m]-similarity of graphs

We say graphs G and H are MSO[m]-similar, denoted
G ≡m H , if no MSO sentence having m quantifiers
distinguishes G and H .

Observe that ≡m is an equivalence relation. Each equivalence
class can be represented as the set of MSO[m] sentences true
over the (structures of the) class.

Fact.

The set ∆m of equivalence classes of the MSO[m]-similarity
relation is finite. Further, there is a computable function
Λ : N→ N such that |∆m | ≤ Λ(m).
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A model-theoretic property of t and ./

Fact.

Each of t and ./ satisfies a Feferman-Vaught kind composition
property.

G1 H1

G2 H2

G1 tH1

G2 tH2

≡m ≡m ≡m

G1 ./ H1

G2 ./ H2

≡m
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A model-theoretic property of t and ./

Fact.

Feferman-Vaught kind composition property of t and ./:
There exist composition functions fm , gm : (∆m ×∆m)→ ∆m

such that if δm(G) is the MSO[m]-similarity class of G , then

δm(G1 tG2) = fm
(
δm(G1), δm(G2)

)
δm(G1 ./ G2) = gm

(
δm(G1), δm(G2)

)

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran



Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1

β1 = δm

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran



Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β1 = δm

β2 = gm(β1, β1) = δm
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3

β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β5 β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm

β5 = gm(β3, β4) = δm(G)

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran



Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β5 β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm

β5 = gm(β3, β4) = δm(G)

G |= ϕ ⇔ ϕ ∈ δm(G)
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β5
G |= ϕ ⇔ ϕ ∈ δm(G)
Total time taken =

time for labeling tG

time to check ϕ ∈ δm(G)

+

+

time to compute
composition functions
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
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b c
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G |= ϕ ⇔ ϕ ∈ δm(G)
Total time taken =

time for labeling tG

time to check ϕ ∈ δm(G)
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Model checking MSO on cographs

Label bottom up in the cotree, each node z with the
MSO[m]-similarity class of the graph represented by the tree
rooted at z .
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Graphs of bounded tree-width or clique-width

These graphs admit tree representations in terms of operations
that satisfy the Feferman-Vaught composition property.

The tree representation of such G is obtainable in polytime:

Tree-width ≤ k : tree-decomposition of width k in time
O(2k · n) where n = |G | (Bodlaender, 1996 [2])

Clique-width ≤ k : A (23k+2 − 1)-expression in time
O(f (k) · n9logn) (Oum-Seymour, 2006 [11])

By exactly the same reasoning as for cographs, we obtain the
following algorithmic metatheorems for bounded tree-width/
clique-width graphs.
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Graphs of bounded tree-width or clique-width

Theorem. (Courcelle, 1990 [4]; Frick-Grohe, 2004 [8])

Let Tk be the class of all graphs of tree-width ≤ k . Then
MC(Tk ,MSO) has a linear time FPT algorithm with the size of the
MSO sentence as the parameter. The parameter dependence is
non-elementary.

Theorem. (Courcelle-Makowsky-Rotics, 2000 [5]; Frick-Grohe,
2004 [8]; Oum-Seymour, 2006 [11])

Let Ck be the class of all graphs of clique-width ≤ k . Then
MC(Ck ,MSO) has an FPT algorithm with the size of the MSO
sentence as the parameter. The parameter dependence is
non-elementary.
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Structures: Graphs

Technique: FO Locality
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Locality of FO

Define a local FO sentence as one that asserts for some r , d ∈ N
and some FO sentence ϕ that

“There exist r vertices that are pairwise > 2d distance apart
and whose d -neighborhoods satisfy ϕ”

Theorem. (Gaifman, 1982 [9])

Every FO sentence is equivalent to a Boolean combination of local
sentences.

The “Gaifman normal form” is computable.

The size of the GNF of ϕ is a non-elementary function of |ϕ|
(Dawar-Grohe-Kreutzer-Schweikardt, 1997 [6]).
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Locality of FO

Define a local FO sentence as one that asserts for some r , d ∈ N
and some FO sentence ϕ that

“There is a d -scattered set consisting of r vertices each of whose
d -neighborhoods satisfies ϕ”

Theorem. (Gaifman, 1982 [9])

Every FO sentence is equivalent to a Boolean combination of local
sentences.

The “Gaifman normal form” is computable.

The size of the GNF of ϕ is a non-elementary function of |ϕ|
(Dawar-Grohe-Kreutzer-Schweikardt, 1997 [6]).
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Locality of FO

Define a local FO sentence as one that asserts for some r , d ∈ N
and some FO sentence ϕ that

“There is a d -scattered set consisting of r vertices each of whose
d -neighborhoods satisfies ϕ”

Theorem. (Gaifman, 1982 [9])

Every FO sentence is equivalent to a Boolean combination of local
sentences.

The “Gaifman normal form” is computable.

The size of the GNF of ϕ is a non-elementary function of |ϕ|
(Dawar-Grohe-Kreutzer-Schweikardt, 1997 [6]).
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The case of bounded degree graphs
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Evaluating local sentences

Let G have degree ≤ k and ψ be the local sentence asserting
“There exists a d -scattered set of r vertices each of whose d -

neighborhoods satisfy ϕ”

Labeling G using ϕ:

Label a vertex x of G with 1 if its d -neighborhood Nd (x )
models ϕ, else label with 0.

deg(G) ≤ k ⇒ |Nd (x )| ≤ kd+1 = constant, say c

Time taken to label x = c|ϕ|. Then time to label all vertices
of G = c|ϕ| × n where n = |G |.
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Evaluating local sentences

Let G have degree ≤ k and ψ be the local sentence asserting
“There exists a d -scattered set of r vertices amenable for ϕ”

Labeling G using ϕ:

Label a vertex x of G with 1 if its d -neighborhood Nd (x )
models ϕ, else label with 0.

deg(G) ≤ k ⇒ |Nd (x )| ≤ kd+1 = constant, say c

Time taken to label x = c|ϕ|. Then time to label all vertices
of G = c|ϕ| × n where n = |G |.
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Evaluating local sentences

Let G have degree ≤ k and ψ be the local sentence asserting
“There exists a d -scattered set of r vertices amenable for ϕ”

Labeling G using ϕ:

Label a vertex x of G with 1 if its d -neighborhood Nd (x )
models ϕ, else label with 0.

deg(G) ≤ k ⇒ |Nd (x )| ≤ kd+1 = constant, say c

Time taken to label x = c|ϕ|. Then time to label all vertices
of G = c|ϕ| × n where n = |G |.
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

G
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

G

2d

x1
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

G

2d

x22d

x1
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

2d

x3
G

2d

x22d

x1
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

2d

x3
G

2d

x22d

x1

S = ∅
While (G has a 1-labeled vertex) {

x := some 1-labeled vertex
S := S ∪ {x}
G := G \N2d(x )

}
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

If |S| ≥ r , return True.

Else check (brute force) if H =
⋃

x∈S
⋃

y∈Z(x)Nd (y) models
the local sentence ψ where Z(x ) = set of 1-labeled vertices in
N2d (x ), and return the answer.

G

r = 4

Contains no 0-labeled vertices!

x2

x3

2d

x1

2d

2d
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Evaluating local sentences (Contd.)

Finding a d -scattered set of r vertices amenable for ϕ:

If |S| ≥ r , return True.

Else check (brute force) if H =
⋃

x∈S
⋃

y∈Z(x)Nd (y) models
the local sentence ψ where Z(x ) = set of 1-labeled vertices in
N2d (x ), and return the answer.

r = 4

Together contain all 1-labeled vertices

x2

x3

2d

x1

2d

2d

|H| ≤ 3 · k3d+1

Time taken to
evaluate ψ

≤ (3 · k3d+1)|ψ|
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Model checking FO on bounded degree graphs

Recall: Converting an FO sentence into its Gaifman normal
form is computable.

Recall: Each local sentence can be evaluated in FPT linear
time on a bounded degree graph.

Evaluating a Boolean combination of truth values is linear in
the number of truth values.

Theorem. (Seese, 1996 [13]; Frick-Grohe, 2004 [8])

Let Zk be the class of graphs of degree ≤ k . Then MC(Zk ,FO)
has a linear time FPT algorithm with the size of the FO sentence
as the parameter. The parameter dependence is triply exponential.
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Structures: Graphs

Technique: Combining FV-Composition and FO Locality
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A closer look at an earlier argument

Let G have degree ≤ k and ψ be the local sentence asserting

“There exists a d-scattered set of r vertices amenable for ϕ”

Labeling G using ϕ:

Label a vertex x of G with 1 if its d-neighborhood Nd(x)

models ϕ, else label with 0.

deg(G) ≤ k ⇒ |Nd(x)| ≤ kd+1 = constant, c

Time taken to label x = c|ϕ|. Then time to label all vertices

of G = cϕ| × n where n = |G|.
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A closer look at an earlier argument

Let G have degree ≤ k and ψ be the local sentence asserting

“There exists a d-scattered set of r vertices amenable for ϕ”

Labeling G using ϕ:

Label a vertex x of G with 1 if its d-neighborhood Nd(x)

models ϕ, else label with 0.

deg(G) ≤ k ⇒ |Nd(x)| ≤ kd+1 = constant, c

Time taken to label x = c|ϕ|. Then time to label all vertices

of G = cϕ| × n where n = |G|.
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Graph classes of bounded local tree-width

These graph classes are locally tree-like: there is f : N→ N
such that for every d , every graph G in the class and every
vertex x of G , tree-width of Nd (x ) is ≤ f (d).

E.g. planar graphs: f (d) ≤ 3d (Robertson-Seymour, 1984);
graphs embeddable on a surface of genus k : f (d) ≤ c · k · d
(Eppstein, 1999).

By combining the ideas of locality and FV-composition (that
gave linear time FPT algorithms), we get the following.

Theorem. (Frick-Grohe, 2001 [7], 2004 [8])

Let LT be a class of bounded local tree-width. Then MC(LT,FO)
has a linear time FPT algorithm with the parameter being the FO
sentence size. The parameter dependence is non-elementary.
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Thank you!
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