Algorithmic metatheorems: A survey

Abhisekh Sankaran IMSc, Chennai

Formal Methods Update Meet

BITS Goa

July 21, 2018

Question $(\mathcal{MC}(\mathcal{C}, \mathcal{L}))$

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, check (algorithmically) if $\mathcal{A} \models \varphi$.

Question $(\mathcal{MC}(\mathcal{C}, \mathcal{L}))$

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, check (algorithmically) if $\mathcal{A} \models \varphi$.

- Decidable
 - FO: $O(n^{|\varphi|})$ where $n=|\mathcal{A}|$
 - MSO: $O(2^{n\cdot |\varphi|})$

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Question $(\mathcal{MC}(\mathcal{C},\mathcal{L}))$

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, check (algorithmically) if $\mathcal{A} \models \varphi$.

- Decidable -
 - FO: $O(n^{|\varphi|})$ where $n=|\mathcal{A}|$
 - MSO: $O(2^{n \cdot |\varphi|})$
- The above is essentially the best we know so far: model checking FO/MSO over the set-structure $\mathcal{A} = (\{1,2\})$ is already PSPACE-complete (reduction from QBF).

A parameterized view of $\mathcal{MC}(\mathcal{C},\mathcal{L})$

- A fixed parameter tractable (FPT) algorithm for a problem having parameters k_1, \ldots, k_r etc. is an algorithm solving the problem in time $f(k_1, \ldots, k_r) \cdot n^{O(1)}$ where n is the size of the input and $f : \mathbb{N}^r \to \mathbb{N}$ is a computable function.
- E.g. Minimum vertex cover is NP-complete but has an FPT algorithm.

Question $(\mathcal{MC}(\mathcal{C}, \mathcal{L}))$

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, is there an FPT algorithm for $\mathcal{MC}(\mathcal{C}, \mathcal{L})$ where $|\varphi|$ is the parameter?

A parameterized view of $\mathcal{MC}(\mathcal{C},\mathcal{L})$

- A fixed parameter tractable (FPT) algorithm for a problem having parameters k_1, \ldots, k_r etc. is an algorithm solving the problem in time $f(k_1, \ldots, k_r) \cdot n^{O(1)}$ where n is the size of the input and $f : \mathbb{N}^r \to \mathbb{N}$ is a computable function.
- E.g. Minimum vertex cover is NP-complete but has an FPT algorithm.

Question $(\mathcal{MC}(\mathcal{C}, \mathcal{L}))$

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, is there an FPT algorithm for $\mathcal{MC}(\mathcal{C}, \mathcal{L})$ where $|\varphi|$ and some structural aspects of the structures of \mathcal{C} , are parameters?

A parameterized view of $\mathcal{MC}(\mathcal{C},\mathcal{L})$

- A fixed parameter tractable (FPT) algorithm for a problem having parameters k_1, \ldots, k_r etc. is an algorithm solving the problem in time $f(k_1, \ldots, k_r) \cdot n^{O(1)}$ where n is the size of the input and $f : \mathbb{N}^r \to \mathbb{N}$ is a computable function.
- E.g. Minimum vertex cover is NP-complete but has an FPT algorithm.

Question (Algorithmic metatheorem for $\mathcal{MC}(\mathcal{C}, \mathcal{L})$)

Let \mathcal{C} be a class of finite structures and \mathcal{L} a logic like FO, MSO, etc. Given a structure $\mathcal{A} \in \mathcal{C}$ and a sentence $\varphi \in \mathcal{L}$, is there an FPT algorithm for $\mathcal{MC}(\mathcal{C}, \mathcal{L})$ where $|\varphi|$ and some structural parameters of the structures of \mathcal{C} , are parameters?

Talk outline

We look at various classes of structures that admit algorithmic metatheorems for $\mathcal{MC}(\mathcal{C},\mathcal{L})$ and give the intuitive ideas for the techniques used.

Structures	Techniques
Posets	Automata
Graphs	Feferman-Vaught composition
	Locality of FO

Structures: Posets Technique: Automata

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sa

- By the Büchi-Elgot-Trakhtenbrot theorem, there is an algorithm translating φ into a finite automaton \mathcal{A} such that $L(\mathcal{A}) =$ word models of φ .
- Model checking algorithm: Convert φ into $\mathcal A$ and run $\mathcal A$ on w!
- Running time: $f(\varphi) + |w|$ where $f(\varphi)$ is the (computable) time taken in converting φ to \mathcal{A} .

Theorem. (Büchi-Elgot-Traktenbrot, 1960s [3])

The problem $\mathcal{MC}(\mathsf{Binary-words},\mathsf{MSO})$ has a linear time FPT algorithm with the size of the MSO sentence as the parameter.

Theorem. (Büchi-Elgot-Traktenbrot, 1960s [3]; Frick-Grohe, 2004 [8])

The problem $\mathcal{MC}(\mathsf{Binary-words},\mathsf{MSO})$ has a linear time FPT algorithm with the size of the MSO sentence as the parameter. The dependence on the parameter is non-elementary.

Trees, nested words and traces

- Similar linear time algorithmic metatheorems for ordered/ranked trees, nested words and traces.
- This is because there exists a Büchi-Elgot-Traktenbrot-like theorem for
 - ordered/ranked trees: in terms of tree automata (Rabin, 1967 [12])
 - nested words: in terms of nested word automata (Alur-Madhusudan, 2009 [1])
 - traces: in terms of Zielonka automata (Zielonka, 1987 [14])
- The parameter dependence is again non-elementary as words are special cases of the above structures.

Structures: Graphs Technique: Feferman-Vaught composition

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Cographs

Generated from point graphs using disjoint union and join.

MSO[m]-similarity of graphs

 We say graphs G and H are MSO[m]-similar, denoted G ≡_m H, if no MSO sentence having m quantifiers distinguishes G and H.

Formal Methods Update Meet, BITS Goa, July 21, 2018

MSO[m]-similarity of graphs

- We say graphs G and H are MSO[m]-similar, denoted G ≡_m H, if no MSO sentence having m quantifiers distinguishes G and H.
- Observe that ≡_m is an equivalence relation. Each equivalence class can be represented as the set of MSO[m] sentences true over the (structures of the) class.

Fact.

The set Δ_m of equivalence classes of the MSO[m]-similarity relation is finite. Further, there is a computable function $\Lambda: \mathbb{N} \to \mathbb{N}$ such that $|\Delta_m| \leq \Lambda(m)$.

A model-theoretic property of \sqcup and \bowtie

Fact.

Each of \sqcup and \bowtie satisfies a Feferman-Vaught kind composition property.

Formal Methods Update Meet, BITS Goa, July 21, 2018

Fact.

Feferman-Vaught kind composition property of \sqcup and \bowtie : There exist composition functions $f_m, g_m : (\Delta_m \times \Delta_m) \to \Delta_m$ such that if $\delta_m(G)$ is the MSO[m]-similarity class of G, then

$$\delta_m(G_1 \sqcup G_2) = f_m(\delta_m(G_1), \delta_m(G_2))$$

$$\delta_m(G_1 \bowtie G_2) = g_m(\delta_m(G_1), \delta_m(G_2))$$

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

 $\beta_1 = \delta_m (\bullet)$

Formal Methods Update Meet, BITS Goa, July 21, 2018

Formal Methods Update Meet, BITS Goa, July 21, 2018

$$\beta_1 = \delta_m (\bullet)$$

$$\beta_2 = g_m(\beta_1, \beta_1) = \delta_m (\bullet - \bullet)$$

$$\beta_3 = f_m(\beta_1, \beta_1) = \delta_m (\bullet - \bullet)$$

Formal Methods Update Meet, BITS Goa, July 21, 2018

$$\beta_{1} = \delta_{m} (\bullet)$$

$$\beta_{2} = g_{m}(\beta_{1}, \beta_{1}) = \delta_{m}(\bullet \bullet \bullet)$$

$$\beta_{3} = f_{m}(\beta_{1}, \beta_{1}) = \delta_{m}(\bullet \bullet \bullet)$$

$$\beta_{4} = f_{m}(\beta_{2}, \beta_{2}) = \delta_{m}(\bullet \bullet)$$

Formal Methods Update Meet, BITS Goa, July 21, 2018

Formal Methods Update Meet, BITS Goa, July 21, 2018

Formal Methods Update Meet, BITS Goa, July 21, 2018

Graphs of bounded tree-width or clique-width

- These graphs admit tree representations in terms of operations that satisfy the Feferman-Vaught composition property.
- The tree representation of such G is obtainable in polytime:
 - Tree-width $\leq k$: tree-decomposition of width k in time $O(2^k \cdot n)$ where n = |G| (Bodlaender, 1996 [2])
 - Clique-width $\leq k$: A $(2^{3k+2}-1)$ -expression in time $O(f(k) \cdot n^9 \log n)$ (Oum-Seymour, 2006 [11])
- By exactly the same reasoning as for cographs, we obtain the following algorithmic metatheorems for bounded tree-width/ clique-width graphs.

Theorem. (Courcelle, 1990 [4]; Frick-Grohe, 2004 [8])

Let \mathfrak{T}_k be the class of all graphs of tree-width $\leq k$. Then $\mathfrak{MC}(\mathfrak{T}_k, \mathsf{MSO})$ has a linear time FPT algorithm with the size of the MSO sentence as the parameter. The parameter dependence is non-elementary.

Theorem. (Courcelle-Makowsky-Rotics, 2000 [5]; Frick-Grohe, 2004 [8]; Oum-Seymour, 2006 [11])

Let \mathcal{C}_k be the class of all graphs of clique-width $\leq k$. Then $\mathcal{MC}(\mathcal{C}_k, MSO)$ has an FPT algorithm with the size of the MSO sentence as the parameter. The parameter dependence is non-elementary.

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Structures: Graphs Technique: FO Locality

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Locality of FO

Define a local FO sentence as one that asserts for some $r,d\in\mathbb{N}$ and some FO sentence φ that

"There exist r vertices that are pairwise > 2d distance apart and whose d-neighborhoods satisfy φ "

Locality of FO

Define a local FO sentence as one that asserts for some $r,d\in\mathbb{N}$ and some FO sentence φ that

"There is a *d*-scattered set consisting of r vertices each of whose *d*-neighborhoods satisfies φ "

Locality of FO

Define a local FO sentence as one that asserts for some $r,d\in\mathbb{N}$ and some FO sentence φ that

"There is a *d*-scattered set consisting of r vertices each of whose *d*-neighborhoods satisfies φ "

Theorem. (Gaifman, 1982 [9])

Every FO sentence is equivalent to a Boolean combination of local sentences.

- The "Gaifman normal form" is computable.
- The size of the GNF of φ is a non-elementary function of $|\varphi|$ (Dawar-Grohe-Kreutzer-Schweikardt, 1997 [6]).

The case of bounded degree graphs

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Let G have degree $\leq k$ and ψ be the local sentence asserting "There exists a d-scattered set of r vertices each of whose d-neighborhoods satisfy φ "

Labeling G using $\varphi:$

Labeling G using φ :

• Label a vertex x of G with 1 if its d-neighborhood $N_d(x)$ models φ , else label with 0.

Labeling G using φ :

- Label a vertex x of G with 1 if its d-neighborhood $N_d(x)$ models φ , else label with 0.
- $\deg(G) \le k \Rightarrow |N_d(x)| \le k^{d+1} = \text{constant, say } c$

Labeling G using φ :

- Label a vertex x of G with 1 if its d-neighborhood $N_d(x)$ models φ , else label with 0.
- $\deg(G) \le k \Rightarrow |N_d(x)| \le k^{d+1} = \text{constant, say } c$
- Time taken to label $x = c^{|\varphi|}$. Then time to label all vertices of $G = c^{|\varphi|} \times n$ where n = |G|.

Finding a *d*-scattered set of *r* vertices amenable for φ :

Formal Methods Update Meet, BITS Goa, July 21, 2018

Finding a *d*-scattered set of *r* vertices amenable for φ :

Formal Methods Update Meet, BITS Goa, July 21, 2018

Finding a *d*-scattered set of *r* vertices amenable for φ :

Formal Methods Update Meet, BITS Goa, July 21, 2018

Finding a *d*-scattered set of *r* vertices amenable for φ :

Formal Methods Update Meet, BITS Goa, July 21, 2018

Finding a *d*-scattered set of *r* vertices amenable for φ :

• $S = \emptyset$

- While (G has a 1-labeled vertex) {
 - x := some 1-labeled vertex

•
$$S := S \cup \{x\}$$

•
$$G := G \setminus N_{2d}(x)$$

Finding a d-scattered set of r vertices amenable for φ :

- If $|S| \ge r$, return True.
- Else check (brute force) if $H = \bigcup_{x \in \mathbb{S}} \bigcup_{y \in \mathbb{Z}(x)} N_d(y)$ models the local sentence ψ where $\mathbb{Z}(x) = \text{set of 1-labeled vertices in } N_{2d}(x)$, and return the answer.

A. Sankaran

Finding a *d*-scattered set of r vertices amenable for φ :

- If $|S| \ge r$, return True.
- Else check (brute force) if $H = \bigcup_{x \in \mathbb{S}} \bigcup_{y \in \mathbb{Z}(x)} N_d(y)$ models the local sentence ψ where $\mathbb{Z}(x) = \text{set of 1-labeled vertices in } N_{2d}(x)$, and return the answer.

Model checking FO on bounded degree graphs

- Recall: Converting an FO sentence into its Gaifman normal form is computable.
- Recall: Each local sentence can be evaluated in FPT linear time on a bounded degree graph.
- Evaluating a Boolean combination of truth values is linear in the number of truth values.

Theorem. (Seese, 1996 [13]; Frick-Grohe, 2004 [8])

Let \mathcal{Z}_k be the class of graphs of degree $\leq k$. Then $\mathcal{MC}(\mathcal{Z}_k, \mathsf{FO})$ has a linear time FPT algorithm with the size of the FO sentence as the parameter. The parameter dependence is triply exponential.

Structures: Graphs Technique: Combining FV-Composition and FO Locality

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

Labeling G using φ :

 Label a vertex x of G with 1 if its d-neighborhood N_d(x) models φ, else label with 0.

 $\bullet \ \deg(G) \leq k \Rightarrow |N_d(x)| \leq k^{d+1} = \text{constant, } c$

• Time taken to label $x = c^{|\varphi|}$. Then time to label all vertices of $G = c^{\varphi|} \times n$ where n = |G|.

Labeling G using φ :

• Label a vertex x of G with 1 if its d-neighborhood $N_d(x)$ models φ , else label with 0.

$\bullet \ \deg(G) \leq k \Rightarrow |N_d(x)| \leq k^{d+1} = \text{constant, } c$

• Time taken to label $x = c^{|\varphi|}$. Then time to label all vertices of $G = c^{\varphi|} \times n$ where n = |G|.

Graph classes of bounded local tree-width

- These graph classes are locally tree-like: there is f : N → N such that for every d, every graph G in the class and every vertex x of G, tree-width of N_d(x) is ≤ f(d).
- E.g. planar graphs: $f(d) \leq 3d$ (Robertson-Seymour, 1984); graphs embeddable on a surface of genus k: $f(d) \leq c \cdot k \cdot d$ (Eppstein, 1999).
- By combining the ideas of locality and FV-composition (that gave linear time FPT algorithms), we get the following.

Theorem. (Frick-Grohe, 2001 [7], 2004 [8])

Let \mathcal{LT} be a class of bounded local tree-width. Then $\mathcal{MC}(\mathcal{LT}, FO)$ has a linear time FPT algorithm with the parameter being the FO sentence size. The parameter dependence is non-elementary.

Algorithmic metatheorems for sparse graphs [10]

Figure 1: Sparse graph classes

Formal Methods Update Meet, BITS Goa, July 21, 2018

Thank you!

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

References I

- Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to words. J. ACM, 56(3), 2009.
- Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.
- Julius R. Büchi and Calvin C. Elgot. Decision problems of weak second order arithmetics and finite automata, Part I. *Notices of the American Mathematical Society*, 5:834, 1958.
- Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. *Inf. Comput.*, 85(1):12–75, 1990.
- Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory of Computing Systems*, 33(2):125–150, 2000.

Formal Methods Update Meet, BITS Goa, July 21, 2018 A. Sankaran

References II

- Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model theory makes formulas large. In Proceedings of the International Colloquium on Automata, Languages and Programming, ICALP 2007, Wroclaw, Poland, July 9 – 13, 2007, pages 913–924, 2007.
- Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable structures. *Journal of the ACM (JACM)*, 48(6):1184–1206, 2001.
- Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited. *Ann. Pure Appl. Logic*, 130(1-3):3–31, 2004.

References III

- Haim Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics, pages 105 – 135. Elsevier, 1982.
- Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017.
- Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.
- Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. *Transactions of the American Mathematical Society*, 141:1–35, 1969.

References IV

- Detlef Seese. Linear time computable problems and first-order descriptions. *Math. Struct. Comp. Sci.*, 6:505–526, 1996.
- Wieslaw Zielonka. Notes on finite asynchronous automata. *RAIRO-Theoretical Informatics and Applications*, 21(2):99–135, 1987.