

Exact Crossing Number Parameterized by Vertex Cover

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

joint work with

Abhisekh Sankaran

Department of Computer Science and Technology University of Cambridge, UK

- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple (cont.) curve joining u to v.

- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple (cont.) curve joining u to v.
- No edge passes through a vertex other than its endpoints, and no three edges intersect in a common point.

- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple (cont.) curve joining u to v.
- No edge passes through a vertex other than its endpoints, and no three edges intersect in a common point.
- A very hard algorithmic problem, indeed...

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for *almost-planar* (planar graphs plus one edge)! [Cabello and Mohar, 2010]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

Approximations, at least?

• Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for cr(G) + |V(G)| with bounded degs.; [Even, Guha and Schieber, 2002]

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

Approximations, at least?

- Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for cr(G) + |V(G)| with bounded degs.; [Even, Guha and Schieber, 2002]
- No constant factor approximation for some c > 1; [Cabello, 2013].

NP-hardness

- The general case (no surprise); [Garey and Johnson, 1983]
- The degree-3 and *minor-monotone* cases; [PH, 2004]
- With fixed *rotation scheme*; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And even for almost-planar (planar graphs plus one edge)!
 [Cabello and Mohar, 2010]

Approximations, at least?

- Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for cr(G) + |V(G)| with bounded degs.; [Even, Guha and Schieber, 2002]
- No constant factor approximation for some c > 1; [Cabello, 2013].

Parameterized complexity

• Yes, CR(k) in FPT with parameter k, $O(f(k) \cdot n)$ runtime; [Grohe, 2001 / Kawarabayashi and Reed, 2007]

• Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.

- Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.
- Even for graphs of tree-width 3, the complexity of CR(m) is unknown!

- Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.
- Even for graphs of tree-width 3, the complexity of CR(m) is unknown!
- So, can we come up with any nontrivially rich graph class with unbounded crossing number for which CR(m) is in P (with m on the input)?

- Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.
- Even for graphs of tree-width 3, the complexity of CR(m) is unknown!
- So, can we come up with any nontrivially rich graph class with unbounded crossing number for which CR(m) is in P (with m on the input)?

So far, only one such published result for the *maximal graphs of pathwidth* 3 by [Biedl, Chimani, Derka, and Mutzel, 2017].

- Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.
- Even for graphs of tree-width 3, the complexity of CR(m) is unknown!
- So, can we come up with any nontrivially rich graph class with unbounded crossing number for which CR(m) is in P (with m on the input)?
 So far, only one such published result for the maximal graphs of path
 - width 3 by [Biedl, Chimani, Derka, and Mutzel, 2017].

• Our contribution:

CR(m) is in FPT when parameterized by the vertex cover size. (Any *m*. Warning: only for simple graphs.)

- Trivially for CR(c) with any constant c (even without the FPT result); just guess the c crossings and test planarity.
- Even for graphs of tree-width 3, the complexity of CR(m) is unknown!
- So, can we come up with any nontrivially rich graph class with unbounded crossing number for which CR(m) is in P (with m on the input)?
 So far, only one such published result for the maximal graphs of path
 - width 3 by [Biedl, Chimani, Derka, and Mutzel, 2017].

• Our contribution:

CR(m) is in FPT when parameterized by the vertex cover size. (Any m. Warning: only for simple graphs.)

FPT runtime: $f(k) \cdot n^{\mathcal{O}(1)}$, where k = |X| is the vertex-cover size and f is a computable function (doubly-exponential here).

2 Some Basic Ideas

Inspiration: Crossings and parallel edges

2 Some Basic Ideas

Inspiration: Crossings and parallel edges

Claim.

A bunch of parallel edges can always be *optimally* drawn as one "thick" edge.

2 Some Basic Ideas

Inspiration: Crossings and parallel edges

Claim.

A bunch of parallel edges can always be *optimally* drawn as one "thick" edge. Proof: Draw whole bunch closely along any of its edges with the least crossings.

Vertex cover (VC) \equiv min. number of vertices that hit all edges.

Vertex cover $(VC) \equiv min.$ number of vertices that hit all edges.

(We can compute VC in FPT, even practically...)

Vertex cover (VC) \equiv min. number of vertices that hit all edges. (We can compute VC in FPT, even practically...)

Vertex cover (VC) \equiv min. number of vertices that hit all edges. (We can compute VC in FPT, even practically...)

• Can we not now just take one neighbourhood cluster and draw it whole closely along its star with the least crossings?

• The (unavoidable) fundamental difference between the blue and the red vertices (of $K_{4,9}$ in this case) in an optimal drawing is in the cyclic order of their neighbours.

- The (unavoidable) fundamental difference between the blue and the red vertices (of $K_{4,9}$ in this case) in an optimal drawing is in the cyclic order of their neighbours.
- Surprisingly, this (i.e., neighbours and their cyclic order) is enough!

- The (unavoidable) fundamental difference between the blue and the red vertices (of $K_{4,9}$ in this case) in an optimal drawing is in the cyclic order of their neighbours.
- Surprisingly, this (i.e., neighbours and their cyclic order) is enough!
- Rediscovering an idea used for $K_{m,n}$ already by [Christian, Richter and Salazar, 2013: Zarankiewicz's Conjecture Is Finite for Each Fixed m].

3 Formal View: Topological Clustering

Topological clusters in a drawing

A graph G with a vertex cover X, and its drawing D;

3 Formal View: Topological Clustering

Topological clusters in a drawing

A graph G with a vertex cover X, and its drawing D; same neighbourhood + same clockwise order in $D \leftrightarrow$ same topological cluster (an equivalence relation on $V(G) \setminus X$).

Topological clustering of a drawing

Topological clustering \equiv an induced subdrawing of D s.t.

Topological clustering of a drawing

Topological clustering \equiv an induced subdrawing of D s.t.

- we pick exactly one representative from each topological cluster of D,
- and remember the size of each cluster as the *weight* of the representative.

Consider a drawing D of a graph G, and define

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices,

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices, non-cluster crossings \equiv all other ones.

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices, non-cluster crossings \equiv all other ones.

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices, non-cluster crossings \equiv all other ones.

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices, non-cluster crossings \equiv all other ones.

Consider a drawing D of a graph G, and define

cluster crossings \equiv those between edges incident with same-cluster vertices, non-cluster crossings \equiv all other ones.

Lemma. [Christian, Richter and Salazar, 2013] Any drawing of $K_{2,m}$ that has the same clockwise cyclic order in the part with 2 vertices has at least

$$\left\lfloor \frac{m}{2} \right\rfloor \cdot \left\lfloor \frac{m-1}{2} \right\rfloor$$
 crossings.

Lemma. [Christian, Richter and Salazar, 2013] Any drawing of $K_{2,m}$ that has the same clockwise cyclic order in the part with 2 vertices has at least

$$\left\lfloor \frac{m}{2} \right\rfloor \cdot \left\lfloor \frac{m-1}{2} \right\rfloor$$
 crossings.

Corollary. Any topological cluster of size (weight) c and with m neighbours in X has at least

11/16

$$\binom{c}{2} \cdot \lfloor \frac{m}{2} \rfloor \cdot \lfloor \frac{m-1}{2} \rfloor$$
 (cluster) crossings.

Exact crossing number by vertex cover

-			
	-		

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only $2^{k^{O(k)}}$ possible non-equivalent planarizations of the abstract topological clusterings of G.

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only $2^{k^{O(k)}}$ possible non-equivalent planarizations of the abstract topological clusterings of G.

 \rightarrow We can guess the right one by brute force in FPT!

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only $2^{k^{\mathcal{O}(k)}}$ possible non-equivalent planarizations of the abstract topological clusterings of G.

 \rightarrow We can guess the right one by brute force in FPT!

 \rightarrow But, what about the cluster weights?

Step II: Integer Quadratic Programming

IQP: to find an optimal solution z° to the following optimization problem

Minimize	$oldsymbol{z}^T oldsymbol{Q} oldsymbol{z}$	$+ \boldsymbol{p}^T \boldsymbol{z}$
subject to	Az	$\leq b$
	Cz	= d
	z	$\in \mathbb{Z}^k$

Step II: Integer Quadratic Programming

IQP: to find an optimal solution z° to the following optimization problem

Minimize	$oldsymbol{z}^T oldsymbol{Q} oldsymbol{z}$	$+ p^T z$
subject to	Az	$\leq b$
	Cz	= d
	\boldsymbol{z}	$\in \mathbb{Z}^k$

Theorem. [Lokshtanov, 2015] This IQP can be solved in time $f(k, \lambda) \cdot L^{\mathcal{O}(1)}$ where

- -L = the length of the combined bit representation of the IQP,
- λ = max entry in the matrices A, C, Q and p,
- -k = the number of integer variables.

Suppose an abstract clustering C. What do we have to care about now?

- Every neighbourh. cluster size $g(i) \rightarrow$ partition to weights of its abstract topological clusters (integer vector z, with sections for each cluster).

- Every neighbourh. cluster size $g(i) \rightarrow$ partition to weights of its abstract topological clusters (integer vector z, with sections for each cluster).
- The weight $z_{(a,b)}$ of each topological cluster contributes to (cluster) crossings by an explicit quadratic formula above.

- Every neighbourh. cluster size $g(i) \rightarrow$ partition to weights of its abstract topological clusters (integer vector z, with sections for each cluster).
- The weight $z_{(a,b)}$ of each topological cluster contributes to (cluster) crossings by an explicit quadratic formula above.
- Every actual crossing in C, by the weight(s), contributes an easy quadratic (or linear if one edge in X) term to the total (non-cluster) crossings.

- Every neighbourh. cluster size $g(i) \rightarrow \text{partition to weights of its abstract}$ topological clusters (integer vector z, with sections for each cluster).
- The weight $z_{(a,b)}$ of each topological cluster contributes to (cluster) crossings by an explicit quadratic formula above.
- Every actual crossing in C, by the weight(s), contributes an easy quadratic (or linear if one edge in X) term to the total (non-cluster) crossings.
- Altogether...

• We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g. . .
 - getting an unbounded number of neighbourhood clusters, and

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g. . .
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

• Adding "more layers" to our clustering?

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

 Adding "more layers" to our clustering? This would look like parameterization by the *tree-depth*, however...

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

- Adding "more layers" to our clustering? This would look like parameterization by the *tree-depth*, however...
 - we tried hard (also with other collaborators), but it looks hopeless,

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

- Adding "more layers" to our clustering? This would look like parameterization by the *tree-depth*, however...
 - we tried hard (also with other collaborators), but it looks hopeless,
 - actually, one would have to do this first for Optimal linear arrangement, and even that seems terribly hard.

- We can compute the exact crossing number parameterized by the vertex cover, but only for simple graphs.
- Multigraphs? Those bring various deep problems, e.g...
 - getting an unbounded number of neighbourhood clusters, and
 - getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

- Adding "more layers" to our clustering? This would look like parameterization by the *tree-depth*, however...
 - we tried hard (also with other collaborators), but it looks hopeless,
 - actually, one would have to do this first for Optimal linear arrangement, and even that seems terribly hard.

Thank you for your attention.