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Petr Hliněný, Graph Drawing 19, Pr̊uhonice, 2019 2 / 16 Exact crossing number by vertex cover

1 Crossing Number Problem1 Crossing Number Problem



page.16
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Definition. CR(m) ≡ the problem to draw a graph with ≤ m edge crossings.

– The vertices of G are distinct points in the plane,
and every edge e = uv ∈ E(G) is a simple (cont.) curve joining u to v.
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1 Crossing Number Problem1 Crossing Number Problem

Definition. CR(m) ≡ the problem to draw a graph with ≤ m edge crossings.

– The vertices of G are distinct points in the plane,
and every edge e = uv ∈ E(G) is a simple (cont.) curve joining u to v.

– No edge passes through a vertex other than its endpoints,
and no three edges intersect in a common point.

• A very hard algorithmic problem, indeed. . .
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Brief complexity status of CR(k)Brief complexity status of CR(k)

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]
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NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

• And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]

Approximations, at least?

• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degs.;
[Even, Guha and Schieber, 2002]

• No constant factor approximation for some c > 1; [Cabello, 2013].
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Brief complexity status of CR(k)Brief complexity status of CR(k)

NP-hardness

• The general case (no surprise); [Garey and Johnson, 1983]

• The degree-3 and minor-monotone cases; [PH, 2004]

• With fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]

• And even for almost-planar (planar graphs plus one edge)!
[Cabello and Mohar, 2010]

Approximations, at least?

• Up to factor log3 |V (G)| (log2 ·) for cr(G)+|V (G)| with bounded degs.;
[Even, Guha and Schieber, 2002]

• No constant factor approximation for some c > 1; [Cabello, 2013].

Parameterized complexity

• Yes, CR(k) in FPT with parameter k, O
(
f(k) · n

)
runtime;

[Grohe, 2001 / Kawarabayashi and Reed, 2007]
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What about polynomial algorithms?

• Trivially for CR(c) with any constant c (even without the FPT result);
just guess the c crossings and test planarity.



page.16
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What about polynomial algorithms?

• Trivially for CR(c) with any constant c (even without the FPT result);
just guess the c crossings and test planarity.

• Even for graphs of tree-width 3, the complexity of CR(m) is unknown!

• So, can we come up with any nontrivially rich graph class with unbounded
crossing number for which CR(m) is in P (with m on the input)?

So far, only one such published result for the maximal graphs of path-
width 3 by [Biedl, Chimani, Derka, and Mutzel, 2017].

• Our contribution:

CR(m) is in FPT when parameterized by the vertex cover size.

(Any m. Warning: only for simple graphs.)

FPT runtime: f(k) · nO(1), where k = |X| is the vertex-cover size and
f is a computable function (doubly-exponential here).
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Claim.
A bunch of parallel edges can always be optimally drawn as one “thick” edge.
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2 Some Basic Ideas2 Some Basic Ideas

Inspiration: Crossings and parallel edges

Claim.
A bunch of parallel edges can always be optimally drawn as one “thick” edge.

Proof: Draw whole bunch closely along any of its edges with the least crossings.
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Vertex cover and neighbourhood clusters

Vertex cover (VC) ≡ min. number of vertices that hit all edges.
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Vertex cover and neighbourhood clusters

Vertex cover (VC) ≡ min. number of vertices that hit all edges.

(We can compute VC in FPT, even practically. . . )

k

}
≤ 2k clusters

• Can we not now just take one neighbourhood cluster and draw it whole
closely along its star with the least crossings?
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• NO, that would be too easy, right?
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• The (unavoidable) fundamental difference between the blue and the red
vertices (of K4,9 in this case) in an optimal drawing is in the cyclic order
of their neighbours.
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• NO, that would be too easy, right?

• The (unavoidable) fundamental difference between the blue and the red
vertices (of K4,9 in this case) in an optimal drawing is in the cyclic order
of their neighbours.

• Surprisingly, this (i.e., neighbours and their cyclic order) is enough!

• Rediscovering an idea used for Km,n already by [Christian, Richter and
Salazar, 2013: Zarankiewicz’s Conjecture Is Finite for Each Fixed m].
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3 Formal View: Topological Clustering3 Formal View: Topological Clustering

Topological clusters in a drawing

A graph G with a vertex cover X, and its drawing D;
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3 Formal View: Topological Clustering3 Formal View: Topological Clustering

Topological clusters in a drawing

A graph G with a vertex cover X, and its drawing D;

same neighbourhood + same clockwise order in D ↔ same topological cluster

(an equivalence relation on V (G) \X).
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Topological clustering of a drawing

3

2

3

3

2 3

Topological clustering ≡ an induced subdrawing of D s.t.
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Topological clustering of a drawing

3

2

3

3

2 3

Topological clustering ≡ an induced subdrawing of D s.t.

• we pick exactly one representative from each topological cluster of D,

• and remember the size of each cluster as the weight of the representative.
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Petr Hliněný, Graph Drawing 19, Pr̊uhonice, 2019 10 / 16 Exact crossing number by vertex cover

The Core LemmaThe Core Lemma

Consider a drawing D of a graph G, and define

cluster crossings ≡ those between edges incident with same-cluster vertices,



page.16
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The Core LemmaThe Core Lemma

Consider a drawing D of a graph G, and define

cluster crossings ≡ those between edges incident with same-cluster vertices,

non-cluster crossings ≡ all other ones.

Lemma. For every good drawing D of a graph G with a vertex cover X,
there exists its topological clustering DX such that the number of non-cluster
crossings in D is at least cr(DX) (with weighted crossings!).
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Consider a drawing D of a graph G, and define

cluster crossings ≡ those between edges incident with same-cluster vertices,

non-cluster crossings ≡ all other ones.

Lemma. For every good drawing D of a graph G with a vertex cover X,
there exists its topological clustering DX such that the number of non-cluster
crossings in D is at least cr(DX) (with weighted crossings!).

3



page.16
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Consider a drawing D of a graph G, and define

cluster crossings ≡ those between edges incident with same-cluster vertices,

non-cluster crossings ≡ all other ones.

Lemma. For every good drawing D of a graph G with a vertex cover X,
there exists its topological clustering DX such that the number of non-cluster
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Counting Cluster CrossingsCounting Cluster Crossings

...

Lemma. [Christian, Richter and Salazar, 2013]
Any drawing of K2,m that has the same clockwise cyclic order in the part with
2 vertices has at least ⌊m

2

⌋
·
⌊
m− 1

2

⌋
crossings.
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Petr Hliněný, Graph Drawing 19, Pr̊uhonice, 2019 11 / 16 Exact crossing number by vertex cover

Counting Cluster CrossingsCounting Cluster Crossings

...

Lemma. [Christian, Richter and Salazar, 2013]
Any drawing of K2,m that has the same clockwise cyclic order in the part with
2 vertices has at least ⌊m

2

⌋
·
⌊
m− 1

2

⌋
crossings.

Corollary. Any topological cluster of size (weight) c and with m neighbours
in X has at least (

c

2

)
·
⌊m
2

⌋
·
⌊
m− 1

2

⌋
(cluster) crossings.
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4 Algorithmic Side: Brute Force and IQP4 Algorithmic Side: Brute Force and IQP

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.
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4 Algorithmic Side: Brute Force and IQP4 Algorithmic Side: Brute Force and IQP

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only 2k
O(k)

possible non-equivalent planarizations of the
abstract topological clusterings of G.
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Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only 2k
O(k)

possible non-equivalent planarizations of the
abstract topological clusterings of G.

→ We can guess the right one by brute force in FPT!

. . .
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Petr Hliněný, Graph Drawing 19, Pr̊uhonice, 2019 13 / 16 Exact crossing number by vertex cover

4 Algorithmic Side: Brute Force and IQP4 Algorithmic Side: Brute Force and IQP

Step I: Abstract topological clusterings

I.e., topological clusterings of some drawing of G, stripped of their weights.

Lemma. There are only 2k
O(k)

possible non-equivalent planarizations of the
abstract topological clusterings of G.

→ We can guess the right one by brute force in FPT!

. . .

→ But, what about the cluster weights?
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Petr Hliněný, Graph Drawing 19, Pr̊uhonice, 2019 14 / 16 Exact crossing number by vertex cover

Step II: Integer Quadratic Programming

IQP: to find an optimal solution z◦ to the following optimization problem

Minimize zTQz + pTz

subject to Az ≤ b

Cz = d

z ∈ Zk
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Step II: Integer Quadratic Programming

IQP: to find an optimal solution z◦ to the following optimization problem

Minimize zTQz + pTz

subject to Az ≤ b

Cz = d

z ∈ Zk

Theorem. [Lokshtanov, 2015]
This IQP can be solved in time f(k, λ) · LO(1) where

– L = the length of the combined bit representation of the IQP,

– λ = max entry in the matrices A, C, Q and p,

– k = the number of integer variables.
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Suppose an abstract clustering C. What do we have to care about now?

– Every neighbourh. cluster size g(i) → partition to weights of its abstract
topological clusters (integer vector z, with sections for each cluster).
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Suppose an abstract clustering C. What do we have to care about now?

– Every neighbourh. cluster size g(i) → partition to weights of its abstract
topological clusters (integer vector z, with sections for each cluster).

– The weight z(a,b) of each topological cluster contributes to (cluster) cross-
ings by an explicit quadratic formula above.
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Suppose an abstract clustering C. What do we have to care about now?

– Every neighbourh. cluster size g(i) → partition to weights of its abstract
topological clusters (integer vector z, with sections for each cluster).

– The weight z(a,b) of each topological cluster contributes to (cluster) cross-
ings by an explicit quadratic formula above.

– Every actual crossing in C, by the weight(s), contributes an easy quadratic
(or linear if one edge in X) term to the total (non-cluster) crossings.
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IQP formulation for our caseIQP formulation for our case

Suppose an abstract clustering C. What do we have to care about now?

– Every neighbourh. cluster size g(i) → partition to weights of its abstract
topological clusters (integer vector z, with sections for each cluster).

– The weight z(a,b) of each topological cluster contributes to (cluster) cross-
ings by an explicit quadratic formula above.

– Every actual crossing in C, by the weight(s), contributes an easy quadratic
(or linear if one edge in X) term to the total (non-cluster) crossings.

– Altogether. . .

Minimize f(z) = 1
2 z

TQz + pTz + c0

over all z =
(
z(1,1), . . . , z(1,g(1)), . . . , z(l,1), . . . , z(l,g(l))

)
subject to

g(i)∑
j=1

z(i,j) = g(i) for i ∈ {1, . . . , l}

z(i,j) ≥ 0 for (i, j) ∈ I = {(1, 1), . . . , (l, g(l))}

z ∈ Z|I|
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5 Conclusions and Questions5 Conclusions and Questions

• We can compute the exact crossing number parameterized by the vertex
cover, but only for simple graphs.
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We actually believe the non-simple variant to be W-hard.
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– getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

• Adding “more layers” to our clustering?
This would look like parameterization by the tree-depth, however. . .
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5 Conclusions and Questions5 Conclusions and Questions

• We can compute the exact crossing number parameterized by the vertex
cover, but only for simple graphs.

• Multigraphs? Those bring various deep problems, e.g. . .

– getting an unbounded number of neighbourhood clusters, and

– getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

• Adding “more layers” to our clustering?
This would look like parameterization by the tree-depth, however. . .

– we tried hard (also with other collaborators), but it looks hopeless,
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• We can compute the exact crossing number parameterized by the vertex
cover, but only for simple graphs.

• Multigraphs? Those bring various deep problems, e.g. . .

– getting an unbounded number of neighbourhood clusters, and

– getting too high entries in the matrix of our IQP.

We actually believe the non-simple variant to be W-hard.

• Adding “more layers” to our clustering?
This would look like parameterization by the tree-depth, however. . .

– we tried hard (also with other collaborators), but it looks hopeless,

– actually, one would have to do this first for Optimal linear arrange-
ment, and even that seems terribly hard.

Thank you for your attention.Thank you for your attention.
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