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Introduction

Classical model theory studies the relationship between the
properties of definable classes of structures and the properties
of their defining formulae.

A preservation theorem characterizes (definable) classes of
structures closed under a given model theoretic operation.

Preservation under substructures – the  Loś-Tarski theorem.

Connections of the  Loś-Tarski theorem with various
mathematical disciplines

Inspired the whole area of preservation theorems, and was
amongst the earliest applications of Gödel’s compactness
theorem and the downward Löwenheim-Skolem theorem.
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Introduction (Contd.)

Finite model theory has similar aims as classical model theory
but concerns itself with only finite structures.

Unfortunately, most preservation theorems fail in the finite.
This includes the  Loś-Tarski theorem.

Recent research (by Atserias, Dawar, Grohe, Kolaitis) has
focussed on “recovering” preservation theorems by considering
classes of finite structures having good algorithmic properties.

These include classes of bounded degree, those that are
acyclic and more generally of bounded tree-width, and turn
out to be “well-behaved” model-theoretically as well.

Investigating such well-behavedness is an active and current
line of research.
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Talk outline

 Loś-Tarski theorem

Summary of contributions,
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a conjecture

Generalized  Loś-Tarski theorem

in classical model theory
(finite and infinite structures)

Generalized  Loś-Tarski theorem
in finite model theory
(only finite structures)

Ph.D. defence, July 19, 2016 4/50



Some assumptions and notation for the talk

Assumptions:

First order (FO) logic.

Relational vocabularies (i.e. only predicates).

Notations:

∀∗ = ∀x1 . . . ∀xn(quantifier-free formula in x1, . . . xn)

∃k∀∗ = ∃x1 . . . ∃xk∀y1 . . . ∀yn
(quantifier-free formula in x1, . . . , xk , y1, . . . , yn)

Σ2 =
⋃

k≥0
∃k∀∗

Similarly, ∃∗, ∀k∃∗ and Π2

A1 ⊆ A2 means A1 is a substructure of A2. For graphs, ⊆
means induced subgraph.

UA = universe of A.
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 Loś-Tarski theorem

Summary of contributions,
open challenges, and

a conjecture

Generalized  Loś-Tarski theorem
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Classical preservation properties

Definition

A sentence ϕ is said to be preserved under substructures, denoted
ϕ is PS , if

(

(A |= ϕ) ∧ (B ⊆ A)
)

→ B |= ϕ.

E.g.: ϕ = ∀x∀yE (x , y) describing the class of cliques, is PS .
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c
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f
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b

c
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Classical preservation properties

Definition

A sentence ϕ is said to be preserved under substructures, denoted
ϕ is PS , if

(

(A |= ϕ) ∧ (B ⊆ A)
)

→ B |= ϕ.

E.g.: ϕ = ∀x∀yE (x , y) describing the class of cliques, is PS .

In general, every ∀∗ sentence is PS .

Definition

A sentence ϕ is said to be preserved under extensions, denoted ϕ is
PE , if ¬ϕ is PS .

PS and PE are dual properties. Every ∃∗ sentence is PE .
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The  Loś-Tarski theorem: LT

Theorem ( Loś-Tarski, 1954-55)

1 A sentence is PS iff it is equivalent to a ∀∗ sentence.

2 A sentence is PE iff it is equivalent to an ∃∗ sentence.
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New parameterized generalizations
of the classical properties
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Preservation under substructures modulo k -cruxes

Definition

A sentence ϕ is said to be preserved under substructures modulo
k -cruxes, abbreviated ϕ is PSC (k), if for each model A of ϕ, there
is a subset C of UA, of size ≤ k , s.t.

(

(B ⊆ A) ∧ (C ⊆ UB)
)

→ B |= ϕ

The set C is called a k -crux of A (w.r.t. ϕ).

Easy to see that

PS = PSC (0)

PSC (0) ⊆ PSC (1) ⊆ PSC (2) ⊆ . . .
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An example

Eg. Consider ϕ = ∃x∀yE (x , y).
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An example

Eg. Consider ϕ = ∃x∀yE (x , y).

A

A |= ϕ

a

b c

Any witness for x is a 1-crux. Thus ϕ is PSC (1).
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An example

Eg. Consider ϕ = ∃x∀yE (x , y).

A

B |= ϕ

a

b c
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An example

Eg. Consider ϕ = ∃x∀yE (x , y).

A

A |= ϕ

a

b c

Any witness for x is a 1-crux. Thus ϕ is PSC (1).

There can be 1-cruxes that are not witnesses for x .

Observe that ϕ is not PS . Then PS ( PSC (1).

More generally, PSC (0) ( PSC (1) ( PSC (2) ( . . ..
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Natural properties of computer science interest are PSC (k)

1. Bounded degree PSC (0)

2. G-freeness for any G (eg. triangle-freeness) PSC (0)

3. Bounded diameter (eg. cliqueness) PSC (0)

4. Vertex cover of size ≤ k PSC (k)

5. Dominating set of size ≤ k PSC (k)

6. Independent set of size ≥ k , clique of size ≥ k PSC (k)

7. Edge cover of size ≤ k PSC (2k)

8. Matching of size ≥ k PSC (2k)
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The dual of PSC (k) and some quick observations

Definition

A sentence ϕ is said to be preserved under k -ary covered
extensions, abbreviated ϕ is PCE (k), if ¬ϕ is PSC (k).

PCE (0) is exactly PE .

Any ∃k∀∗ sentence φ is PSC (k).

Whereby, any ∀k∃∗ sentence is PCE (k).

Question: What about the converses of the last two statements?
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The generalized  Loś-Tarski theorem
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The generalized  Loś-Tarski theorem: GLT(k)

Theorem (GLT(k))

1 A sentence is PSC (k) iff it is equivalent to an ∃k∀∗ sentence.

2 A sentence is PCE (k) iff it is equivalent to a ∀k∃∗ sentence.
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The generalized  Loś-Tarski theorem: GLT(k)

(= PS)

PSC(1)

PSC(0)

PSC(2)

PSC

∀∗(. . .)

Σ2

∃∀∗(. . .)

∃2∀∗(. . .)

Substructural version

(= PE)

PCE(1)

PCE(0)

PCE(2)

∃∗(. . .)

∀∃∗(. . .)

∀2∃∗(. . .)

Extensional version

 Loś-

Tarski

 Loś-

Tarski

⋃
k≥0 PSC(k)

⋃
k≥0 ∃

k∀∗(. . .)

PCE Π2

⋃
k≥0 PCE(k)

⋃
k≥0 ∀

k∃∗(. . .)

Ph.D. defence, July 19, 2016 14/50



Extending GLT(k) to the case of theories
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Extending earlier notions to theories

A theory is a (possibly infinite) set of sentences, and can be
understood as the conjunction of its sentences.

The notions of ∀∗, ∃k∀∗, ∃∗ and ∀k∃∗ for sentences have
natural extensions to theories.

Likewise, the properties of PS ,PSC (k),PE and PCE (k)
have natural extensions to theories.

Question: What are characterizations of these extended properties?
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LT for theories

Theorem ( Loś-Tarski, 1954-55)

1 A theory is PS iff it is equivalent to a ∀∗ theory.

2 A theory is PE iff it is equivalent to an ∃∗ theory.
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Extending GLT(k) to theories

Theorem (GLT(k) for theories)

1 A theory is PCE (k) iff it is equivalent to a ∀k∃∗ theory.

2 If a theory is PSC (k), then it is equivalent to a Σ2 theory.
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Extending GLT(k) to theories

Theorem (GLT(k) for theories)

1 A theory is PCE (k) iff it is equivalent to a ∀k∃∗ theory.

2 If a theory is PSC (k), then it is equivalent to an ∃k∀∗ theory
(under a well-motivated model-theoretic hypothesis).
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Extensional version of GLT(k) for theories

PCE(1)

PCE(0)

PCE(2)

{∃∗(. . .), ∃∗(. . .), · · · }

{∀∃∗(. . .), ∀∃∗(. . .), · · · }

{∀2∃∗(. . .), ∀2∃∗(. . .), · · · }

 Loś-

Tarski

PCE Π2

⋃
k≥0 PCE(k) ⋃

k≥0Π2(k)

Π2(0)

Π2(1)

Π2(2)

{∀∗∃∗(. . .), ∀∗∃∗(. . .), · · · }

≡ A ⊆ B

≡ A = BA B

A B
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Substructural version of GLT(k) for theories

PSC(1)

PSC(0)

PSC(2)

{∀∗(. . .), ∀∗(. . .), · · · }

{∃∀∗(. . .), ∃∀∗(. . .), · · · }

{∃2∀∗(. . .), ∃2∀∗(. . .), · · · }

 Loś-

Tarski

PSC Σ2

⋃
k≥0 PSC(k)

⋃
k≥0Σ2(k)

Σ2(0)

Σ2(1)

Σ2(2)

{∃∗∀∗(. . .), ∃∗∀∗(. . .), · · · }

≡ A ⊆ B

≡ A = BA B

A B

≡ A ‖ BA B
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k≥0 PSC(k)

⋃
k≥0Σ2(k)

Σ2(0)

Σ2(1)

Σ2(2)

{∃∗∀∗(. . .), ∃∗∀∗(. . .), · · · }

≡ A ⊆ B

≡ A = BA B

A B

≡ A ‖ BA B

?

?

?
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{∀∗(. . .), ∀∗(. . .), · · · }

{∃∀∗(. . .), ∃∀∗(. . .), · · · }
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k≥0 PSC(k)

⋃
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Σ2(0)

Σ2(1)

Σ2(2)

{∃∗∀∗(. . .), ∃∗∀∗(. . .), · · · }

≡ A ⊆ B

≡ A = BA B

A B

≡ A ‖ BA B

Under a well-motivated
model-theoretic

hypothesis
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Techniques used

Saturated structures

Unions of ascending chains

A new technique of “going above”FO and then “coming back”

Going above: Use an infinitary logic to express the property

Coming back: Use a “compiler result” to translate an infinitary
sentence to an equivalent FO theory
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Generalized  Loś-Tarski theorem

in classical model theory
(finite and infinite structures)

Generalized  Loś-Tarski theorem
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Preservation properties ‘over a given class of structures’

Definition

Let U be a given class of structures. A sentence ϕ is said to be
preserved under substructures over U, abbreviated ϕ is PS over U,
if for each structure A of U, we have

(

(A |= ϕ) ∧ (B ⊆ A)
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Preservation properties ‘over a given class of structures’

Definition

Let U be a given class of structures. A sentence ϕ is said to be
preserved under substructures over U, abbreviated ϕ is PS over U,
if for each structure A of U, we have

(

(A |= ϕ) ∧ (B ⊆ A) ∧(B ∈ U)
)

→ (B |= ϕ).

One can similarly define the preservation properties of
PE ,PSC (k) and PCE (k) over a class U of structures.

One can then talk about preservation theorems over U.

All results seen so far have been over the class of all
structures.
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What happens in the finite?
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LT in the finite

Proposition (Tait 1959, Gurevich-Shelah 1984)

LT fails over the class U of all finite structures. There is a sentence
that is PS over U but is not equivalent, over U, to any ∀∗ sentence.

Theorem (Atserias-Dawar-Grohe, 2008)

The LT holds over each of the following classes of graphs:

1 The class of all acyclic graphs.

2 The class of all graphs of degree ≤ d , for each d ∈ N.

3 The class of all graphs of tree-width ≤ d , for each d ∈ N.
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GLT(k) in the finite

Proposition

GLT(k) fails over the class U of all finite structures, for each k ≥ 0.

Proposition

GLT(k) fails over any hereditary class of finite graphs that has
unbounded diameter, for each k ≥ 2.

Summary: Over the classes identified by Atserias, Dawar and
Grohe, LT holds but GLT(k) fails for each k ≥ 2.
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Investigating new classes of finite structures for GLT(k)

Can we identify structural properties (possibly abstract) of classes
of finite structures, that are satisfied by interesting classes, and
that admit GLT(k)?
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Investigating new classes of finite structures for GLT(k)

Can we identify structural properties (possibly abstract) of classes
of finite structures, that are satisfied by interesting classes, and
that admit GLT(k)? And further, in effective form?
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m-similarity of structures

A

B

a

b c
A and B are 1-similar, but not 2-similar.

We say graphs G and H are m-similar, if G and H agree on all
properties that can be expressed using FO sentences having
quantifier nesting depth m.
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A new logic based combinatorial property
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if

∀A ∀m ∈ N

A

∃B ⊆ A

(i) the size of B is bounded in m

(ii) B is m-similar to A

B

“A has a small m-similar substructure”
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if there exists a witness function θ : N → N such that

∀A ∀m ∈ N

A

∃B ⊆ A

(i) |B| ≤ θ(m) and

(ii) B is m-similar to A

B

“A has a small m-similar substructure”
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The Equivalent Bounded Substructure Property

Definition

Given k ∈ N, we say EBSP(k) holds if there is a witness function θ : N → N

such that
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The Equivalent Bounded Substructure Property

Definition

Given a class S of structures and k ∈ N, we say EBSP(S, k) holds if there
is a witness function θ : N → N such that
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The Equivalent Bounded Substructure Property

Definition

Given a class S of structures and k ∈ N, we say EBSP(S, k) holds if there
is a witness function θ : N → N such that

∀A ∈ S ∀m ∈ N

∀W ⊆ UA such that |W| ≤ k

A

∃B ⊆ A

(i) B ∈ S (ii) B contains W

(ii) |B| ≤ θ(m) and

(iii) B is m-similar to A

B

W

“ ∀W ⊆k UA, A has a small m-similar substructure around W ” – over S
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Example for EBSP(S, k)

A

a

b

c

d

e
f

g

h

j

i

W = {b, i}

(iii) |B| ≤ m · 4 + k

(i) B ⊆ A

(ii) W ⊆ UB
k = 2

(iv) B is 2-similar to A

B

a

b

c

d

f

h

i

= 10e

g
m = 2

EBSP(S, k) holds with the witness function given by
θ(m) = 4m + k .

Ph.D. defence, July 19, 2016 29/50



EBSP(S, k) – a finitary analogue of the downward
Löwenheim-Skolem property

A A

DLSP(κ) EBSP(S, k) for a fixed m

∀A

∀W ⊆ UA such that |W| ≤ κ

(i) B ⊆ A (ii) B contains W

(iii) B has size at most κ, and

There is a natural number p such that

∀A ∈ S

∀W ⊆ UA such that |W| ≤ k

∃B
(i) B ⊆ A (ii) B contains W

(iii) B has size at most p, and

∃B ∈ S

B

W

B

W

(iv) B is FO-similar to A (iv) B is m-similar to A
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EBSP(S, k) and GLT(k)

Theorem

Let S be a class of finite structures and k ∈ N be such that
EBSP(S, k) holds. Then the following are true:

GLT(k) holds over S.

If there is a computable witness function for EBSP(S, k), then
there is an algorithm that translates a given PSC (k)/PCE (k)
sentence to an equivalent ∃k∀∗/∀k∃∗ sentence.
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Classes that satisfy EBSP(·, k)
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Posets satisfying EBSP(·, k)
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Words and trees (unordered, ordered, ranked)

Classically studied structures

a b b a

b b

a

a

b b

a

a b b a

b b

a

Unordered Σ-tree Ordered Σ-tree Ordered Σ-tree ranked by ρ

; ρ = {a → 2 ,b → 1)}

b

Σ = {a, b} Σ = {a, b} Σ = {a, b}

a b a

Σ-word

Σ = {0, 1}

Ph.D. defence, July 19, 2016 32/50



Nested words

Introduced by Alur and Madhusudan in 2004 as joint
generalization of words and ordered unranked trees.

b b aa

a a

b a

b

1

2

3

4

5 6

7

8 9

a abb

a ab

b a

W = (abaababba,  )

 = {(2, 8), (4, 7)}
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Regular languages of words, trees and nested words

A regular language of words/trees/nested words is a class of
words/trees/nested words that can be recognized by a finite
word/tree/nested word automaton.

Theorem

Let S be a regular language of words, trees (unordered, ordered or
ranked) or nested words. For each k , EBSP(S, k) holds with a
computable witness function.
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Graphs satisfying EBSP(·, k)
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m-partite cographs

Hlinĕný, Nes̆et̆ril, et al. introduced in 2012, the class of
m-partite cographs.
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m-partite cographs

Hlinĕný, Nes̆et̆ril, et al. introduced in 2012, the class of
m-partite cographs.

An m-partite cograph G is a graph that has an m-partite
cotree representation t:

fx = fz = 0

fy = 1

fv( , ) = 1, else 0

fw( , ) = 1, else 0

cb

e fd

a

t

d f

a c

b e

x y

zv

w

2 2 1 2

1 1
G

Label set = {1, 2}

2 2

1 1
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Important subclasses of m-partite cographs

Cographs (1-partite cographs): complete graphs, complete
k -partite graphs, threshold graphs, etc.

Bounded tree-depth graphs

Bounded shrub-depth graphs

All of the above classes are of active current interest for their
excellent algorithmic and logical properties!
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m-partite cographs and its subclasses satisfy EBSP(·, k)

Theorem

Let S be a hereditary subclass of any of the following graph classes.
For each k , EBSP(S, k) holds with a computable witness function.

1 the class of m-partite cographs

2 any graph class of bounded shrub-depth

3 any graph class of bounded tree-depth

4 the class of cographs
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Constructing new classes satisfying EBSP(·, k)
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Unary operations on structures

a

b

c d

e1

e2 e3

e4

e1

e2 e3

e4

line

a

b c

d a

b c

d

complement

a

b c

d a

b c

d

transpose
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Binary operations on structures

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 ⊔G2

disjoint union

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 ⊲⊳ G2

join
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Binary operations on structures

parallel
connect

series
connect

a

b

c

d

f

e

a

b

c

e

a

b
c

f

e

G1 G2

G1 ‖ G2
G1 −G2
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Binary operations on structures

(a, 1)

(a, 2) (a, 3)

(b, 2) (b, 3)

(a, 4)

(b, 4)(b, 1)

(a, 1)

(b, 3)

(b, 4)

(a, 2)

(a, 3)(b, 2)

(b, 1)(a, 4)

G1 G2

G1 ×G2 G1 ⊗G2

cartesian
product

tensor
product

1

2 3

4a

b
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Generating graphs using trees of operations

×

K2 ‖

⊗ ⊗

K2 ‖

line K2

⊲⊳

⊔ K1

K1 K2

‖ K2

K2 line

⊲⊳

K1 ⊔

K2 K1

K1 = single vertex; K2 = single edge
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Closure of EBSP(·, ·) under unary operations

Theorem

Given a class S, let Z be any one of the following classes.

1 Complement(S)

2 Transpose(S)

3 Line(S)
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Closure of EBSP(·, ·) under unary operations

Theorem

Given a class S, let Z be any one of the following classes.

1 Complement(S)

2 Transpose(S)

3 Line(S)

Then the following are true:

EBSP(S, k) → EBSP(Z, k).
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Closure of EBSP(·, ·) under unary operations

Theorem

Given a class S, let Z be any one of the following classes.

1 Complement(S)

2 Transpose(S)

3 Line(S)

Then the following are true:

EBSP(S, k) → EBSP(Z, k).

If EBSP(S, k) holds with a computable witness function, then
so does EBSP(Z, k).
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Closure of EBSP(·, ·) under binary operations

Theorem

Given classes S1 and S2, let Z be any one of the following classes.

1. Disjoint-union(S1, S2)

3. Series-connect(S1, S2)

5. Cartesian-product(S1, S2)

2. Join(S1, S2)

4. Parallel-connect(S1, S2)

6. Tensor-product(S1, S2)
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Closure of EBSP(·, ·) under binary operations

Theorem

Given classes S1 and S2, let Z be any one of the following classes.

1. Disjoint-union(S1, S2)

3. Series-connect(S1, S2)

5. Cartesian-product(S1, S2)

2. Join(S1, S2)

4. Parallel-connect(S1, S2)

6. Tensor-product(S1, S2)

The following are true:
(

EBSP(S1, k) ∧ EBSP(S2, k)
)

→ EBSP(Z, k) if Z in 1-4.
(

EBSP(S1, 2k) ∧ EBSP(S2, 2k)
)

→ EBSP(Z, k) if Z in 5-6.
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Closure of EBSP(·, ·) under binary operations

Theorem

Given classes S1 and S2, let Z be any one of the following classes.

1. Disjoint-union(S1, S2)

3. Series-connect(S1, S2)

5. Cartesian-product(S1, S2)

2. Join(S1, S2)

4. Parallel-connect(S1, S2)

6. Tensor-product(S1, S2)

The following are true:
(

EBSP(S1, k) ∧ EBSP(S2, k)
)

→ EBSP(Z, k) if Z in 1-4.
(

EBSP(S1, 2k) ∧ EBSP(S2, 2k)
)

→ EBSP(Z, k) if Z in 5-6.

Further, if the conjuncts in the antecedent have computable
witness functions, then so does the consequent.
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Techniques used to prove EBSP(·, k) for a class

Key observation: Each of the structures A seen so far has a
tree representation tA.

We perform “prunings” and “graftings” in tA that preserve the
substructure and m-similarity relation between the newly
formed subtree and tA.

We eventually get a small subtree of tA representing a small
m-similar substructure of A.

Key technical features making the method work:

Finite number of different “m-similarity types”
Composition properties

The techniques above have been incorporated into a single
abstract theorem concerning trees.
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Motivating question revisited

Can we identify structural properties (possibly abstract) of classes
of finite structures, that are satisfied by interesting classes, and
that admit GLT(k)?
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Motivating question revisited

Can we identify structural properties (possibly abstract) of classes
of finite structures, that are satisfied by interesting classes, and
that admit GLT(k)? And further, in effective form?
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An answer to the motivating question

All these classes satisfy
GLT(k) in effective form for all k !

EBSP

Posets

1. Words
2. Trees

a. Unordered
b. Ordered
c. Ranked

3. Nested words

Graphs

1. Cographs
2. Bounded tree-depth graphs
3. Bounded shrub-depth graphs
4. m-partite cographs

Classes generated using

1. Unary operations
a. complement
b. transpose
c. line

2. Binary operations
a. disjoint union
b. join
c. series-connect
d. parallel-connect
e. cartesian product
f. tensor product
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Talk outline

 Loś-Tarski theorem

Generalized  Loś-Tarski theorem

in classical model theory
(finite and infinite structures)

Generalized  Loś-Tarski theorem
in finite model theory
(only finite structures)

Summary of contributions,
open challenges, and

a conjecture

Ph.D. defence, July 19, 2016



Contributions to classical model theory

Notions: PSC (k) and PCE (k)

Admit natural variants that capture prenex FO sentences with
n quantifier blocks
Are finitary and combinatorial in nature, and stay non-trivial
over finite structures

Results: GLT(k)

provides new and finer characterizations of Σ2 and Π2

relates counts of quantifiers to model-theoretic properties
can contribute to a keener understanding of the inner structure
of model theory (extending Wilfrid Hodges’ observation about
the role of preservation theorems in model theory)

Techniques: A new technique of syntactically describing a
property in FO, by “going above” FO and then “coming back”.
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Contributions to finite model theory

Notions: EBSP(S, k)

Strong connections to classical model theory
Strong connections to computer science
Admits several natural variants

Results:

Strengthening the result showing the failure of  Loś-Tarski
theorem in the finite
A preservation theorem (GLT(k)) that enforces structural
conditions
Characterizing prenex FO sentences with two quantifier blocks
Identifying a wide spectrum of classes of finite structures that
are “well-behaved” model-theoretically
Relating the property of well-quasi-ordering with logic

Techniques: An abstract theorem concerning tree
representations
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Open questions

A. Classical model theory

Getting an unconditional characterization of PSC (k) theories

B. Finite model theory (questions concerning EBSP(S, k))

[Model-theoretic] Other theorems of classical model theory
that are entailed by EBSP(S, k) (Lyndon’s positivity theorem,
Craig’s interpolation theorem, etc.)

[Graph-theoretic] Structural characterization of EBSP(·, k). If
not in general, under reasonable assumptions?

[Probabilistic] Classes that satisfy the EBSP condition “with
high probability”.
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A conjecture

PSC(1)

PSC(0)

PSC(2)

PSC

∀∗(. . .)

Σ2

∃∀∗(. . .)

∃2∀∗(. . .)

GLT(k)

 Loś-

Tarski

⋃
k≥0 PSC(k)

⋃
k≥0 ∃

k∀∗(. . .)

Over all structures

(finite and infinite)
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A conjecture

PSC(1)

PSC(0)

PSC(2)

PSC

∀∗(. . .)

Σ2

∃∀∗(. . .)

∃2∀∗(. . .)

GLT(k)

⋃
k≥0 PSC(k)

⋃
k≥0 ∃

k∀∗(. . .)

Over all finite structures
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A conjecture

PSC(1)

PSC(0)

PSC(2)

PSC

∀∗(. . .)

Σ2

∃∀∗(. . .)

∃2∀∗(. . .)

GLT(k)

⋃
k≥0 PSC(k)

⋃
k≥0 ∃

k∀∗(. . .)

?

Over all finite structures
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A conjecture

PSC(1)

PSC(0)

PSC(2)

PSC

∀∗(. . .)

Σ2

∃∀∗(. . .)

∃2∀∗(. . .)

GLT(k)

⋃
k≥0 PSC(k)

⋃
k≥0 ∃

k∀∗(. . .)

Over all finite structures

Conjecture:

PSC = Σ2
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Dhanyavād!
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