Extension preservation in the finite and prefix classes of first order logic

Abhisekh Sankaran University of Cambridge

Joint work with Anuj Dawar

CSL '21 Jan 25, 2021

Introduction

- The Łoś-Tarski theorem ('54 '55) from model theory characterizes FO definable extension preserved properties of arbitrary structures in terms of existential sentences.
- Historically significant: among the earliest applications of Gödel's Compactness theorem and opened the area of preservation theorems in model theory.
- Fails in the finite: there is an extension preserved FO sentence that is not equivalent to any existential sentence over all finite structures (Tait, '59).
- Rosen and Weinstein observed ('94) that Tait's sentence is expressible in Datalog(¬), and asked if FO ∩ Datalog(¬) is contained in some prefix class of FO beyond the existential.

Main results

$$\begin{split} \Sigma_n := \exists \bar{x}_1 \forall \bar{x}_2 \exists \bar{x}_3 \dots Q \bar{x}_n \alpha(\bar{x}_1, \dots, \bar{x}_n) & \text{where } \alpha \text{ is quantifier-free} \\ \Pi_n := \forall \bar{x}_1 \exists \bar{x}_2 \forall \bar{x}_3 \dots Q^c \bar{x}_n \alpha(\bar{x}_1, \dots, \bar{x}_n) & \text{and } Q = \forall \text{ iff } n \text{ is even.} \end{split}$$

Theorem

Tait's sentence is a $\Sigma_3 \cap \mathtt{Datalog}(\neg)$ sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence.

Theorem

For every n, there is a vocabulary σ_n and a $\Sigma_{2n+1} \cap \mathtt{Datalog}(\neg)$ sentence of $\mathsf{FO}(\sigma_n)$ that is extension preserved over all finite structures, but is not equivalent over this class to any Π_{2n+1} sentence.

Main results

$$\begin{split} \Sigma_n := \exists \bar{x}_1 \forall \bar{x}_2 \exists \bar{x}_3 \dots Q \bar{x}_n \alpha(\bar{x}_1, \dots, \bar{x}_n) \quad \text{where } \alpha \text{ is quantifier-free} \\ \Pi_n := \forall \bar{x}_1 \exists \bar{x}_2 \forall \bar{x}_3 \dots Q^c \bar{x}_n \alpha(\bar{x}_1, \dots, \bar{x}_n) \quad \text{and } Q = \forall \text{ iff } n \text{ is even.} \end{split}$$

Theorem

Tait's sentence is a $\Sigma_3 \cap \mathtt{Datalog}(\neg)$ sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension preserved FO properties in the finite, and even
- FO \cap Datalog(\neg) queries in the finite^a

^aResolves an open problem posed by Rosen and Weinstein in '94

The sentence $\mathsf{SomeTotalR}_n$

Construction of the sentence

SomeTotalR₁ := (LO
$$\land$$
 PartialSucc₁) $\rightarrow \exists u \exists v \text{ RTotal}_1(u, v)$
($\in \text{FO}(\sigma_1) \text{ where } \sigma_1 = \{ \leq, R_1, S_1 \}$)

 $LO := " \le is a linear order"$

 $PartialSucc_1 := \forall u \forall v$

 $RTotal_1(u, v) :=$

A. Sankaran

CSL '21, Jan 25, 2021

Construction of the sentence

SomeTotalR_n := (LO
$$\land$$
 PartialSucc_n) $\rightarrow \exists u \exists v \text{ RTotal}_n(u, v)$
($\in \text{FO}(\sigma_n)$ where $\sigma_n = \sigma_{n-1} \cup \{P_n, R_n, S_n\}$)

 $LO := " \le is a linear order"$

 $PartialSucc_n := \forall u \forall v$

$$Succ_n := P_n(u) \land P_n(v) \land S_n(u,v) \land Some Total R_{n-1}^{[u,v]}$$

$$u \Rightarrow \text{No } P_n \text{ points between } u \text{ and } v$$

$$\bullet - P_n$$

 $RTotal_n(u, v) :=$

A. Sankaran

CSL '21, Jan 25, 2021

Construction of the sentence

SomeTotalR_n is Datalog(\neg) expressible

• A Datalog(\neg) rule is of one of the foll. forms:

$$R(\bar{x}) \leftarrow A(\bar{x}_1)$$

 $R(\bar{x}) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$

where A is an atom (equality included) or its negation, but each non-atom predicate R_i (which could be R) must appear un-negated. In both rules, LHS variables \subseteq RHS variables.

- A $Datalog(\neg)$ program is a finite set of $Datalog(\neg)$ rules.
- Every Datalog(¬) program is extension closed.
- ¬ LO and ¬ Succ_n are easily expressible in Datalog(¬) via induction; RTotal_n is essentially a reachability condition and hence Datalog(¬) expressible. Then so is SomeTotalR_n.

SomeTotalR_n is not Π_{2n+1} expressible

Theorem

The Σ_{2n+1} sentence SomeTotalR_n is not equivalent over all finite σ_n -structures to any Π_{2n+1} sentence.

- Let $\Sigma_{n,k}=$ all Σ_n sentences in which each quantifier block has size $\leq k$; so $\Sigma_n=\bigcup_{k\geq 0}\Sigma_{n,k}$. Define $\Pi_{n,k}$ analogously.
- Let $\mathcal{A} \Rightarrow_{n,k} \mathcal{B} = \text{for each } \Sigma_{n,k} \text{ sentence } \theta$, it holds that $\mathcal{A} \models \theta \rightarrow \mathcal{B} \models \theta$.
- $\mathcal{A} \Rightarrow_{n,k} \mathcal{B}$ is equivalent to: for each $\Pi_{n,k}$ sentence γ , it holds that $\mathcal{B} \models \gamma \to \mathcal{A} \models \gamma$.
- For each n, k, we construct a model $\mathfrak{M}_{n,k}$ and a non-model $\mathfrak{N}_{n,k}$ of SomeTotalR_n such that $\mathfrak{N}_{n,k} \Rrightarrow_{2n+1,k} \mathfrak{M}_{n,k}$.

Ehrenfeucht-Fraïssé game argument

Ehrenfeucht-Fraïssé (EF) game for $\Rightarrow_{n,k}$

- Two players: Spoiler and Duplicator; Game arena: a pair (A, B) of structures; Rounds: n.
- In odd rounds i, Spoiler chooses a k-tuple \bar{a}_i from \mathcal{A} and in even rounds i, he chooses a k-tuple \bar{b}_i from \mathcal{B} .
- Duplicator responds with k-tuples \bar{b}_i from \mathcal{B} in odd rounds and with k-tuples \bar{a}_i from \mathcal{A} in even rounds.
- Duplicator wins the play of the game if $(\bar{a}_i \mapsto \bar{b}_i)_{1 \leq i \leq n}$ is a partial isomorphism between \mathcal{A} and \mathcal{B} . She has a winning strategy if she wins every play of the game.

Theorem

Duplicator has a winning strategy in the above game iff $A \Rightarrow_{n,k} B$.

Composition properties

Construction of $\mathfrak{M}_{n,k}$ and $\mathfrak{N}_{n,k}$ (Illustrated for k=3)

$\overline{\mathcal{M}_{1,3}}$ and $\overline{\mathcal{N}_{1,3}}$

$\overline{\mathcal{M}_{1,3}}$ and $\overline{\mathcal{N}_{1,3}}$

A. Sankaran

CSL '21, Jan 25, 2021

9/12

Conclusion

Main results

Theorem

Tait's sentence is a $\Sigma_3 \cap \mathtt{Datalog}(\neg)$ sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension closed FO properties in the finite, and even
- FO \cap Datalog(\neg) queries in the finite^a

^aResolves an open problem posed by Rosen and Weinstein in '94

Future directions

- The sentence SomeTotalR_n is over a vocabulary σ_n that grows with n.
- Further, σ_n can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1.

Is there a fixed (finite) vocabulary σ^* such that prefix classes fail to capture extension preserved FO properties of finite σ^* -structures?

Question 2.

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Future directions

- The sentence SomeTotalR_n is over a vocabulary σ_n that grows with n.
- Further, σ_n can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1. (Resolved: Yes! $|\sigma^*| \leq 4$)

Is there a fixed (finite) vocabulary σ^* such that prefix classes fail to capture extension preserved FO properties of finite σ^* -structures?

Question 2. (Not resolved yet)

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Thank you!