Extension preservation in the finite and prefix classes of first order logic

Abhisekh Sankaran
University of Cambridge
Joint work with Anuj Dawar

YR-OWLS
Nov 11, 2020

Introduction

- Extension preservation is a well realized property in computer science. E.g. graphs containing a triangle, of chromatic number ≥ 6, of clique-width ≥ 10, etc.
- The Łoś-Tarski theorem (1954-55) characterizes FO definable extension preserved properties of arbitrary structures in terms of existential sentences.
- Historically significant: among the earliest applications of Gödel's Compactness theorem and opened the area of preservation theorems in model theory.
- Fails in the finite: there is an extension preserved FO sentence that is not equivalent to any existential sentence over all finite structures (Tait, 1959).

Main results

$$
\text { Let } \Sigma_{n}:=\underbrace{\exists \bar{x}_{1} \forall \bar{x}_{2} \exists \bar{x}_{3} \ldots}_{n \text { blocks }} \alpha\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \text { where } \alpha \text { is quantifier-free. }
$$

Theorem

Tait's counterexample is a Σ_{3} FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_{3} sentence. Further, the counterexample can be expressed in Datalog $(\neq \neg)$.

Theorem

For every n, there is a vocabulary σ_{n} and an $\mathrm{FO}\left(\sigma_{n}\right) \Sigma_{2 n+1}$ sentence φ_{n} that is extension closed over all finite structures, but that is not equivalent over this class to any $\Pi_{2 n+1}$ sentence. Further, φ_{n} can be expressed in Datalog (\neq, \neg).

Main results

$$
\text { Let } \Sigma_{n}:=\underbrace{\exists \bar{x}_{1} \forall \bar{x}_{2} \exists \bar{x}_{3} \ldots}_{n \text { blocks }} \alpha\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \text { where } \alpha \text { is quantifier-free. }
$$

Theorem

Tait's counterexample is a Σ_{3} FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_{3} sentence. Further, the counterexample can be expressed in Datalog $(\neq \neg)$.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension closed FO properties in the finite
- $\mathrm{FO} \cap \operatorname{Datalog}(\neq, \neg)$ queries in the finite

Part I: Analysing Tait's sentence

Overview

- The sentence SomeTotalR
- Datalog (\neq, \neg) definition
- Non-preservation under extensions in the infinite
- Inexpressibility in Π_{3} via construction of a suitable model and non-model of SomeTotalR

The sentence

Tait's sentence

$$
\begin{aligned}
\text { SomeTotalR }: & =(\mathrm{LO} \wedge \text { PartialSucc }) \rightarrow \exists u \exists v \operatorname{RTotal}(u, v) \\
& (\in \mathrm{FO}(\sigma) \text { where } \sigma=\{\leq, R, S\})
\end{aligned}
$$

$$
\mathrm{LO}:=" \leq \text { is a linear order" }
$$

$$
\text { PartialSucc }:=\forall u \forall v
$$

$\operatorname{RTotal}(u, v):=$

Tait's sentence

$$
\begin{aligned}
\text { SomeTotalR }: & =(\mathrm{LO} \wedge \text { PartialSucc }) \rightarrow \exists u \exists v \operatorname{RTotal}(u, v) \\
& (\in \mathrm{FO}(\sigma) \text { where } \sigma=\{\leq, R, S\}) \\
\mathrm{LO}:= & \forall x \forall y \forall z \quad\left(\begin{array}{l}
x \leq x \wedge \\
(x \leq y \wedge y \leq x) \rightarrow x=y \wedge \\
(x \leq y \wedge y \leq z) \rightarrow x \leq z
\end{array}\right)
\end{aligned}
$$

PartialSucc :=

$$
\forall u \forall v S(u, v) \rightarrow \forall z(z \leq u \vee v \leq z)
$$

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
& R(v, u) \wedge(\forall z(u \leq z \wedge z<v) \rightarrow \\
& \quad \exists w(z<w \wedge w \leq v \wedge S(z, w)))
\end{aligned}
$$

A model for SomeTotalR

PartialSucc : $=\forall u \forall v$

A model for SomeTotalR

PartialSucc : $=\forall u \forall v$

A model for SomeTotalR

$\operatorname{RTotal}(u, v):=$

A model for SomeTotalR

$$
\text { SomeTotal }:=(\text { LO } \wedge \text { PartialSucc }) \rightarrow \exists u \exists v \operatorname{RTotal}(u, v)
$$

Datalog (\neq, \neg) definition of Tait's sentence

Datalog (\neq, \neg) syntax

- A Datalog (\neq, \neg) rule is of one of the foll. forms:

$$
\begin{array}{lll}
R(\bar{x}) & \longleftarrow & A\left(\bar{x}_{1}\right) \\
R(\bar{x}) & \longleftarrow & R_{1}\left(\bar{x}_{1}\right), \ldots, R_{n}\left(\bar{x}_{n}\right)
\end{array}
$$

- In the first rule above, $A\left(\bar{x}_{1}\right)$ is an atom that can appear negated. Also A can be equality or its negation.
- In the second rule above, all predicates R_{i} that are not atoms appear un-negated. Also, R can be one of the $R_{i} \mathrm{~s}$.
- In both rules, the variables appearing in the LHS are a subset of the variables appearing in the RHS.
- A Datalog (\neq, \neg) program is a finite set of $\operatorname{Datalog}(\neq, \neg)$ rules.

Datalog (\neq, \neg) semantics

- Consider the following Datalog (\neq, \neg) program:

$$
\begin{aligned}
& R(x, y) \longleftarrow A(x, z), B(z, y) \\
& R(x, y) \longleftarrow \neg A(x, z), R(x, y)
\end{aligned}
$$

- The first rule as a program by itself corresponds to

$$
\alpha(x, y):=\exists z(A(x, z) \wedge B(z, y))
$$

- With both rules, the program corresponds to the existential least fixpoint logic sentence $\beta(x, y)$ given as below:

$$
\begin{array}{ll}
\beta(x, y) & \left.:=\operatorname{LFP}_{R, u, v} \varphi(R, u, v)\right](x, y) \\
\varphi(R, u, v) & :=\alpha(u, v) \vee \exists z(\neg A(u, z) \wedge R(u, v))
\end{array}
$$

- Datalog (\neq, \neg) corresponds exactly to existential least fixpoint logic, and thus any $\operatorname{Datalog}(\neq, \neg)$ program is extension closed.

SomeTotalR as a Datalog $(\neq \neg)$ program

- Express \neg LO, \neg PartialSucc, $\exists u \exists v \operatorname{RTotal}(\mathrm{u}, \mathrm{v})$ as $\operatorname{Datalog}(\neq, \neg)$ programs with "start symbols" NotLO, NotPartialSucc, RTotal (u, v) resp. Then the Datalog (\neq, \neg) program for SomeTotalR is

SomeTotalR $\longleftarrow \operatorname{NotLO}|\operatorname{NotPartialSucc}| \operatorname{RTotal}(u, v)$

SomeTotalR as a Datalog $(\neq \neg)$ program

$$
\begin{aligned}
& \mathrm{LO}:=\text { " } \leq \text { is a linear order" } \\
& \mathrm{LO}:=\forall x \forall y \forall z \quad\left(\begin{array}{l}
x \leq x \wedge \\
(x \leq y \wedge y \leq x) \rightarrow x=y \wedge \\
(x \leq y \wedge y \leq z) \rightarrow x \leq z
\end{array}\right) \\
& \neg \mathrm{LO}:=\exists x \exists y \exists z \quad\left(\begin{array}{cc}
\begin{array}{c}
\neg x \leq x \\
(x \leq y \wedge y \leq x \wedge x \neq y) \\
(x \leq y \wedge y \leq z \wedge \neg x \leq z)
\end{array} & \vee
\end{array}\right)
\end{aligned}
$$

Datalog (\neq, \neg) program for $\neg \mathrm{LO}$:

$$
\begin{aligned}
\text { NotLO } \longleftarrow \neg & \leq x \\
& x \leq y, y \leq x, x \neq y \mid \\
x & \leq y, y \leq z, \neg x \leq z
\end{aligned}
$$

SomeTotalR as a Datalog $(\neq \neg)$ program

PartialSucc : $=\forall u \forall v$

\Rightarrow No points in here

PartialSucc $:=\forall u \forall v S(u, v) \rightarrow \neg \exists z\binom{u \leq z \wedge z \leq v \wedge}{u \neq z \wedge z \neq v}$
\neg PartialSucc $:=\exists u \exists v S(u, v) \wedge \exists z \quad\binom{u \leq z \wedge z \leq v \wedge}{u \neq z \wedge z \neq v}$
$\operatorname{Datalog}(\neq, \neg)$ program for \neg PartialSucc:

$$
\begin{aligned}
& \text { NotPartialSucc } \longleftarrow S(u, v), X(u, v) \\
& \qquad X(u, v) \longleftarrow u \leq z, z \leq v, u \neq z, z \neq v
\end{aligned}
$$

SomeTotalR as a Datalog $(\neq \neg)$ program

$\operatorname{RTotal}(u, v):=$

$\operatorname{RTotal}(u, v):=R(v, u) \wedge \forall z(u \leq z \wedge z<v) \rightarrow$

$$
\exists w(z<w \wedge w \leq v \wedge S(z, w))
$$

$\operatorname{Datalog}(\neq, \neg)$ program for $\operatorname{RTotal}(u, v)$:

$$
\begin{aligned}
& \operatorname{RTotal}(u, v) \longleftarrow R(v, u), S \text {-reach }(u, v) \\
& S \text {-reach }(u, v) \longleftarrow S(u, v) \mid S(u, z), S \text {-reach }(z, v)
\end{aligned}
$$

Non extension preservation of Tait's sentence in the infinite

SomeTotalR is not extension preserved in the infinite

SomeTotalR is not extension preserved in the infinite

LO :=" \leq is a linear order"

SomeTotalR is not extension preserved in the infinite

LO := " \leq is a linear order"

SomeTotalR is not extension preserved in the infinite

PartialSucc :=

$$
\forall u \forall v S(u, v) \rightarrow \forall z(z \leq u \vee v \leq z)
$$

SomeTotalR is not extension preserved in the infinite

\mathcal{A}

\downarrow

B

PartialSucc :=

$$
\forall u \forall v S(u, v) \rightarrow \forall z(z \leq u \vee v \leq z)
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
& R(v, u) \wedge(\forall z(u \leq z \wedge z<v) \rightarrow \\
& \quad \exists w(z<w \wedge w \leq v \wedge S(z, w)))
\end{aligned}
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
R(v, u) \wedge(\forall z(u \leq & z \wedge z<v)
\end{aligned} \rightarrow
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
R(v, u) \wedge(\forall z(u \leq & z \wedge z<v)
\end{aligned} \rightarrow
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
& R(v, u) \wedge(\forall z(u \leq z \wedge z<v) \rightarrow \\
& \quad \exists w(z<w \wedge w \leq v \wedge S(z, w)))
\end{aligned}
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
& R(v, u) \wedge(\forall z(u \leq z \wedge z<v) \rightarrow \\
& \quad \exists w(z<w \wedge w \leq v \wedge S(z, w)))
\end{aligned}
$$

SomeTotalR is not extension preserved in the infinite

$\operatorname{RTotal}(u, v):=$

$$
\begin{aligned}
& R(v, u) \wedge(\forall z(u \leq z \wedge z<v) \rightarrow \\
& \quad \exists w(z<w \wedge w \leq v \wedge S(z, w)))
\end{aligned}
$$

SomeTotalR is not extension preserved in the infinite

SomeTotalR $:=(\mathrm{LO} \wedge \operatorname{PartialSucc}) \rightarrow \exists u \exists v \operatorname{RTotal}(u, v)$

Stronger failure of Łoś-Tarski theorem in the finite

Theorem

The Σ_{3} sentence SomeTotalR is not equivalent over all finite σ-structures to any Π_{3} sentence.

- Let $\Pi_{n, k}=$ class of all Π_{n} sentences in which each block of quantifiers has size k. So $\Pi_{n}=\bigcup_{k \geq 0} \Pi_{n, k}$.
- Let $\mathcal{A} \Rightarrow_{n, k} \mathcal{B}=$ for each $\Sigma_{n, k}$ sentence θ, it holds that $\mathcal{A}=\theta \rightarrow \mathcal{B} \models \theta$.
- $\mathcal{A} \Rightarrow_{n, k} \mathcal{B}$ is equivalent to: for each $\Pi_{n, k}$ sentence γ, it holds that $\mathcal{B} \models \gamma \rightarrow \mathcal{A} \models \gamma$.
- For each k, we construct a model \mathcal{M}_{k} and a non-model \mathcal{N}_{k} of SomeTotalR such that $\mathcal{N}_{k} \Rightarrow_{3, k} \mathcal{M}_{k}$.
- We illustrate our constructions for $k=3$.

Construction of \mathcal{M}_{k} and \mathcal{N}_{k}

Construction of \mathcal{M}_{3} and \mathcal{N}_{3}

Construction of \mathcal{M}_{3} and \mathcal{N}_{3}

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$$
\mathrm{LO}:=\text { " } \leq \text { is a linear order" }
$$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$$
\mathrm{LO}:=\text { " } \leq \text { is a linear order" }
$$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

PartialSucc : $=\forall u \forall v$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

PartialSucc : $=\forall u \forall v$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{N}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{N}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$\operatorname{RTotal}(u, v):=$

\mathcal{M}_{3} models SomeTotalR but \mathcal{N}_{3} does not

$$
\text { SomeTotalR }:=(\mathrm{LO} \wedge \text { PartialSucc }) \rightarrow \exists u \exists v \operatorname{RTotal}(u, v)
$$

Inexpressibility of SomeTotaIR in Π_{3} via showing $\mathcal{N}_{k} \Rightarrow{ }_{3, k} \mathcal{M}_{k}$

Ehrenfeucht-Fraïssé (EF) game for $\Rightarrow_{n, k}$

- Two players: Spoiler and Duplicator; Game arena: a pair $(\mathcal{A}, \mathcal{B})$ of structures; Rounds: n.
- In odd rounds i, Spoiler chooses a k-tuple \bar{a}_{i} from \mathcal{A} and in even rounds i, he chooses a k-tuple \bar{b}_{i} from \mathcal{B}.
- Duplicator responds with k-tuples \bar{b}_{i} from \mathcal{B} in odd rounds and with k-tuples \bar{a}_{i} from \mathcal{A} in even rounds.
- Duplicator wins the play of the game if $\left(\bar{a}_{i} \mapsto \bar{b}_{i}\right)_{1 \leq i \leq n}$ is a partial isomorphism between \mathcal{A} and \mathcal{B}. She has a winning strategy if she wins every play of the game.

Theorem

Duplicator has a winning strategy in the above game iff $\mathcal{A} \Rightarrow_{n, k} \mathcal{B}$.

Ordered Sum

Definition

For ordered structures \mathcal{A} and \mathcal{B}, the ordered sum $\mathcal{A} \oplus \mathcal{B}$ is the ordered structure that is the disjoint union of \mathcal{A} and \mathcal{B} with the additional constraints that:

- the elements of \mathcal{A} appear "before" those of \mathcal{B}, and
- the last element of \mathcal{A} is identified with the first element of \mathcal{B}.

Ordered Sum

Definition

For ordered structures \mathcal{A} and \mathcal{B}, the ordered sum $\mathcal{A} \oplus \mathcal{B}$ is the ordered structure that is the disjoint union of \mathcal{A} and \mathcal{B} with the additional constraints that:

- the elements of \mathcal{A} appear "before" those of \mathcal{B}, and
- the last element of \mathcal{A} is identified with the first element of \mathcal{B}.

$$
\begin{aligned}
& \mathcal{M}_{3} \bullet \text { Gap }_{3}^{+} \text {Gap }_{3} \bullet \text { Gap }_{3} \bullet \text { Gap }_{3} \bullet \text { Tot }_{3} \bullet \text { Gap }_{3} \bullet \\
& \\
& =\underbrace{\operatorname{Gap}_{3} \oplus \ldots \oplus \mathrm{Gap}_{3}}_{2^{9}+3 \text { copies }} \oplus \operatorname{Tot}_{3} \oplus \underbrace{\mathrm{Gap}_{3} \oplus \ldots \oplus \mathrm{Gap}_{3}}_{2^{9}+3 \text { copies }}
\end{aligned}
$$

Composition properties

1.

3.

$\underset{y}{7}$

$G_{8} \Rightarrow{ }_{1,3} L_{8}$

$G_{8} \Rightarrow{ }_{1,3} L_{8}$

$\stackrel{\Downarrow}{\leftrightarrows}$

Tot $_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

Tot $_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

Tot $_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

Tot $_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

Tot $_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\stackrel{\pi}{\pi}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathrm{Tot}_{3} \Rightarrow{ }_{2,3} \mathrm{Gap}_{3}$

$\mathcal{N}_{3} \Rightarrow{ }_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow{ }_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow{ }_{3,3} \mathcal{M}_{3}$

$$
\pi \pi^{20}
$$

$\mathcal{N}_{3} \Rightarrow_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow{ }_{3,3} \mathcal{M}_{3}$

$\mathcal{N}_{3} \Rightarrow{ }_{3,3} \mathcal{M}_{3}$

$\underset{\substack{\Downarrow \\ c \\ c}}{\downarrow}$

Generalizing Tait's sentence

Overview

Theorem

For every n, there is a vocabulary σ_{n} and an $\mathrm{FO}\left(\sigma_{n}\right) \Sigma_{2 n+1}$ sentence SomeTotalR ${ }_{n}$ such that the following hold:
(1) SomeTotal R_{n} is extension closed over all finite σ_{n}-structures, but is not equivalent over this class to any $\Pi_{2 n+1}$ sentence.
(2) SomeTotalR ${ }_{n}$ can be expressed in Datalog $(\neq \neg)$.

We will see the following:

- Construction of SomeTotalR ${ }_{n}$
- Datalog (\neq, \neg) expressibility
- Construction of a suitable model $\mathcal{M}_{n, k}$ and non-model $\mathcal{N}_{n, k}$ such that $\mathcal{N}_{n, k} \Rightarrow{ }_{2 n+1, k} \mathcal{M}_{n, k}$

The generalized sentence SomeTotal R_{n}

Construction of SomeTotalR ${ }_{n}$

SomeTotalR $_{1}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{1}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{1}(u, v)$
$\left(\in \mathrm{FO}\left(\sigma_{1}\right)\right.$ where $\left.\sigma_{1}=\left\{\leq, R_{1}, S_{1}\right\}\right)$
$\mathrm{LO}:=$ " \leq is a linear order"
PartialSucc ${ }_{1}:=\forall u \forall v$

$\operatorname{RTotal}_{1}(u, v):=$

Construction of SomeTotalR ${ }_{n}$

$\operatorname{SomeTotalR}_{n}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{n}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{n}(u, v)$ $\left(\in \operatorname{FO}\left(\sigma_{n}\right)\right.$ where $\left.\sigma_{n}=\sigma_{n-1} \cup\left\{P_{n}, R_{n}, S_{n}\right\}\right)$
$\mathrm{LO}:=$ " \leq is a linear order"
PartialSucc $_{n}:=\forall u \forall v$

$\operatorname{RTotal}_{n}(u, v):=$

Construction of SomeTotalR ${ }_{n}$

$\operatorname{SomeTotalR}_{n}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{n}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{n}(u, v)$ $\left(\in \operatorname{FO}\left(\sigma_{n}\right)\right.$ where $\left.\sigma_{n}=\sigma_{n-1} \cup\left\{P_{n}, R_{n}, S_{n}\right\}\right)$
$\mathrm{LO}:=$ " \leq is a linear order"
PartialSucc $_{n}:=$

$$
\forall u \forall v \operatorname{Succ}_{n}(u, v) \rightarrow \forall z\left(P_{n}(z) \rightarrow(z \leq u \vee v \leq z)\right)
$$

$\operatorname{Succ}_{n}(u, v):=P_{n}(u) \wedge P_{n}(v) \wedge S_{n}(u, v) \wedge \operatorname{SomeTotalR}_{n-1}^{[u, v]}$
$\operatorname{RTotal}_{n}(u, v):=$

$$
\begin{aligned}
& P_{n}(u) \wedge P_{n}(v) \wedge R_{n}(v, u) \wedge \\
& \forall z\left(\left(P_{n}(z) \wedge u \leq z \wedge z<v\right) \rightarrow\right. \\
& \quad \exists w\left(P_{n}(w) \wedge z<w \wedge w \leq v \wedge \operatorname{Succ}_{n}(z, w)\right)
\end{aligned}
$$

SomeTotalR ${ }_{n}$ as a Datalog (\neq, \neg) program

- We construct Datalog (\neq, \neg) programs inductively for SomeTotalR ${ }_{n}^{[x, y]}$ with start symbol $\operatorname{STR}_{n}(x, y)$.
- Then the $\operatorname{Datalog}(\neq, \neg)$ program for SomeTotal R_{n} is simply

$$
\text { SomeTotalR }_{n} \longleftarrow \operatorname{STR}_{n}(x, y)
$$

- The $\operatorname{Datalog}(\neq, \neg)$ program for SomeTotal R_{1} is similar to that for Tait's sentence. (It also contains the program for $\neg \mathrm{LO}$).
- Assume the program for SomeTotalR ${ }_{n-1}^{[x, y]}$ has been constructed.

SomeTotalR R_{n} as a Datalog (\neq, \neg) program

$\operatorname{SomeTotalR}_{n}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{n}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{n}(u, v)$
PartialSucc $n:=\forall u \forall v$
$\operatorname{Succ}_{n}\left(:=P_{n}(u) \wedge P_{n}(v) \wedge S_{n}(u, v) \wedge \operatorname{SomeTotalR}_{n-1}^{[u, v]}\right)$

\neg PartialSucc $_{n}:=\exists u \exists v \operatorname{Succ}_{n}(u, v) \wedge \exists z\left(\begin{array}{c}P_{n}(z) \wedge \\ u \leq z \wedge z \leq v \wedge \\ u \neq z \wedge z \neq v\end{array}\right)$
$\operatorname{Datalog}(\neq, \neg)$ program for \neg PartialSucc $_{n}$:

$$
\operatorname{Succ}_{n}(u, v) \longleftarrow P_{n}(u), P_{n}(v), S_{n}(u, v), \operatorname{STR}_{n-1}(u, v)
$$

$$
\operatorname{NotPartialSucc}_{n} \longleftarrow \operatorname{Succ}_{n}(u, v), X(u, v)
$$

$$
X(u, v) \longleftarrow P_{n}(z), u \leq z, z \leq v, u \neq z, z \neq v
$$

SomeTotalR R_{n} as a Datalog (\neq, \neg) program

$$
\operatorname{SomeTotalR}_{n}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{n}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{n}(u, v)
$$

$\operatorname{Datalog}(\neq, \neg)$ programs for $\operatorname{RTotal}_{n}(u, v)$ and $\operatorname{STR}_{n}(x, y)$:

$$
\begin{gathered}
\operatorname{RTotal}_{n}(u, v) \longleftarrow R_{n}(v, u) \operatorname{Total}_{n}(u, v) \\
\operatorname{Total}_{n}(u, v) \longleftarrow \operatorname{Succ}_{n}(u, v) \mid \operatorname{Succ}_{n}(u, z), \operatorname{Total}_{n}(z, v) \\
\operatorname{STR}_{n}(x, y) \longleftarrow \operatorname{NotLO}, \operatorname{NotPartialSucc}_{n}, \\
\\
x \leq u, v \leq y, \operatorname{RTotal}_{n}(u, v)
\end{gathered}
$$

Inexpressibility of SomeTotalR ${ }_{n}$ in $\Pi_{2 n+1}$ via showing $\mathcal{N}_{n, k} \Rightarrow{ }_{2 n+1, k} \mathcal{M}_{n, k}$

Proof approach

$$
\begin{aligned}
& \text { SomeTotalR }_{n}:=\left(\mathrm{LO} \wedge \operatorname{PartialSucc}_{n}\right) \rightarrow \exists u \exists v \operatorname{RTotal}_{n}(u, v) \\
& \mathrm{LO}:=" \leq \text { is a linear order" } \\
& \text { PartialSucc }:=\forall u \forall v
\end{aligned}
$$

- For each k, we construct a model $\mathcal{M}_{n, k}$ and a non-model $\mathcal{N}_{n, k}$ of SomeTotalR ${ }_{n}$ such that $\mathcal{N}_{n, k} \Rightarrow{ }_{2 n+1, k} \mathcal{M}_{n, k}$ holds.
- Then for every $\Pi_{2 n+1, k}$ sentence θ, we have $\mathcal{M}_{n, k}=\theta \rightarrow \mathcal{N}_{n, k}=\theta$; then $\theta \nleftarrow$ SomeTotaIR ${ }_{n}$.

Construction of $\mathcal{M}_{n, k}$ and $\mathcal{N}_{n, k}$ (Illustrated for $k=3$)

$\mathcal{M}_{1,3}$ and $\mathcal{N}_{1,3}$

$\mathcal{M}_{1,3}$ and $\mathcal{N}_{1,3}$

$\mathcal{M}_{n, 3}$ and $\mathcal{N}_{n, 3}$

$\mathcal{M}_{n, 3}$ and $\mathcal{N}_{n, 3}$

Inexpressibility of SomeTotaIR ${ }_{n}$ in $\Pi_{2 n+1}$

All of the following can be shown analogously to the corresponding statements for Tait's sentence.

- The sentence SomeTotalR ${ }_{n}$ is not extension closed in the infinite.
- $\mathcal{M}_{n, k} \models$ SomeTotalR ${ }_{n}$ but $\mathcal{N}_{n, k} \not \vDash$ SomeTotaIR ${ }_{n}$.
- $\operatorname{Tot}_{n, k} \Rightarrow_{2 n, k} \operatorname{Gap}_{n, k}$ and $\mathcal{N}_{n, k} \Rightarrow{ }_{2 n+1, k} \mathcal{M}_{n, k}$.
- Then every $\Pi_{2 n+1, k}$ sentence true in $\mathcal{M}_{n, k}$ is also true in $\mathcal{N}_{n, k}$; whereby SomeTotalR ${ }_{n}$ cannot be equivalent to a $\Pi_{2 n+1, k}$ sentence.

Conclusion

Main results revisited

Theorem

Tait's counterexample is a Σ_{3} FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_{3} sentence. Further, the counterexample can be expressed in Datalog $(\neq \neg)$.

Theorem

For every n, there is a vocabulary σ_{n} and an $\mathrm{FO}\left(\sigma_{n}\right) \Sigma_{2 n+1}$ sentence φ_{n} that is extension closed over all finite structures, but that is not equivalent over this class to any $\Pi_{2 n+1}$ sentence. Further, φ_{n} can be expressed in Datalog (\neq, \neg).

Main results revisited

Theorem

Tait's counterexample is a Σ_{3} FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_{3} sentence. Further, the counterexample can be expressed in Datalog $(\neq \neg)$.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension closed FO properties in the finite
- FO $\cap \operatorname{Datalog}(\neq, \neg)$ queries in the finite

Future directions

- The sentence SomeTotal R_{n} is over a vocabulary σ_{n} that grows with n.
- Further, σ_{n} can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1.

Is there a fixed (finite) vocabulary σ^{*} such that prefix classes fail to capture extension preserved FO properties of finite σ^{*}-structures?

Question 2.

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Future directions

- The sentence SomeTotal R_{n} is over a vocabulary σ_{n} that grows with n.
- Further, σ_{n} can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1. (Resolved: Yes! $\left|\sigma^{*}\right| \leq 4$)

Is there a fixed (finite) vocabulary σ^{*} such that prefix classes fail to capture extension preserved FO properties of finite σ^{*}-structures?

Question 2. (Not resolved yet)

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Thank you!

