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Introduction

The Downward Löwenheim-Skolem theorem (DLS) is amongst
the earliest results in classical model theory.

The first version of DLS is by Löwenheim in his paper Über
Möglichkeiten im Relativkalkül (1915) and reads as follows:

If a first order sentence over a countable vocabulary has
an infinite model, then it has a countable model.

Historically,
1915: First version of DLS by Löwenheim

1920s: Self-contained proof of Löwenheim’s statement
and various generalizations by Skolem

1936: The most general version of DLS by Mal’tsev

DLS + compactness = first order logic (Lindström, 1969).
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Downward Löwenheim-Skolem theorem in the finite

Does not make sense when taken as is.

No recursive version of Löwenheim’s statement:
For every recursive function f : N→ N, there is an FO
sentence ϕ such that ϕ has no model of size < f (|ϕ|).

Grohe showed a stronger negative result:
For every recursive function f : N→ N, there is an FO
sentence ϕ and n ≥ f (|ϕ|), such that ϕ has a model of each
size ≥ n but no model of size < n.

Quoting Grohe, the above counterexample “refutes almost all
possible extensions of the classical Löwenheim-Skolem
theorem to finite structures”.
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Classical theorems over classes of finite structures

Most theorems from classical model theory fail over all finite
structures (DLS, preservation theorems, interpolation
theorems, etc.)

Active research in last 15 years to “recover” classical theorems
over classes interesting from structural and algorithmic
perspectives.

Acyclic, bounded degree, wide, bounded tree-width –
 Loś-Tarski pres. theorem

In addition to the above, quasi-wide classes, classes excluding
atleast one minor – homomorphism pres. theorem

No such studies in the literature for the DLS theorem.
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A. Notions
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The Downward Löwenheim-Skolem Property
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FO-similarity of structures
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(Q,≤) and (R,≤) are FO-similar

We say structures A and B are FO-similar, denoted A ≡ B, if A
and B agree on all properties that can be expressed in FO.
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The Downward Löwenheim-Skolem Property

Definition

We say DLSP holds if
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The Downward Löwenheim-Skolem Property
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We say DLSP holds if

∀A
A

∃B ⊆ A

(i) the size of B is ≤ ωB
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The Downward Löwenheim-Skolem Property
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The Downward Löwenheim-Skolem Property

Definition

We say DLSP holds if

∀A
A

∃B ⊆ A

(i) the size of B is ≤ ω

(ii) B is FO-similar to A

B

≡

≡

“A has an FO-similar substructure of size ≤ ω”
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The Downward Löwenheim-Skolem theorem

Theorem (Löwenheim 1915, Skolem 1920s)

DLSP holds over all infinite structures.
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Adapting DLSP to the finite
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m-similarity of structures

In the finite, FO-similarity = isomorphism.

Define similarity in terms of FO[m] sentences, namely FO
sentences of rank (quantifier nesting depth) at most m.

We say A and B are m-similar, denoted A ≡m B, if A and B

agree on all properties expressible using FO[m] sentences.

A

B

a

b c A and B are 1-similar, but not 2-similar.

≡1

≡1
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if

∀A ∀m ∈ N
A

∃B ⊆ A
B

(i) |B| is bounded in m
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The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if there exists a witness function θ : N→ N such that
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∃B ⊆ A

(i) |B| ≤ θ(m)

(ii) B is m-similar to A

B

≡m

≡m

“A has a small m-similar substructure”

A. Sankaran CSL 2017, Stockholm, August 24, 2017 10/30



The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if there exists a witness function θ : N→ N such that
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The Equivalent Bounded Substructure Property

Definition

Given a class S of finite structures, we say EBSP(S) holds if there is a
witness function θ : N→ N such that

∃B ⊆ A

(ii) B is m-similar to A

B

≡m

≡m

(i) |B| ≤ θ(m)

∀A ∈ S ∀m ∈ N
∃B ⊆ A, B ∈ S
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The Equivalent Bounded Substructure Property

Definition

Given a class S of finite structures, we say EBSP(S) holds if there is a
witness function θ : N→ N such that

∃B ⊆ A

(ii) B is m-similar to A

B

≡m

≡m

(i) |B| ≤ θ(m)

∀A ∈ S ∀m ∈ N
∃B ⊆ A, B ∈ S

“A has a small m-similar substructure” – over S
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EBSP(S) as a finitary analogue of DLSP

A A

DLSP EBSP(S) for a fixed m

∀A

(i) |B| ≤ ω

(ii) B is FO-similar to A

Let p = θ(m)

∃B ⊆ A

B B

∀A ∈ S

(i) |B| ≤ p

(ii) B is m-similar to A

∃B ⊆ A, B ∈ S

≡m

≡m

≡

≡
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B. Results
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Classes that satisfy EBSP
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Words, trees and nested words

a b b a

b b

a

a

b b

a

a b b a

b b

a

Unordered Σ-tree Ordered Σ-tree Ordered Σ-tree ranked by ρ

; ρ = {a→ 2 , b→ 1)}

b

Σ = {a, b} Σ = {a, b} Σ = {a, b}

a b a

Σ-word w = aba

Σ = {a, b}

1 2

3

4

5 6

7

8 9

a b

a a

b a

b a

b  = {(2, 8), (4, 7)}
w = abaababba

Nested Σ-word (w, )

Σ = {a, b}
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Regular languages of words, trees and nested words

A regular language of words/trees/nested words is a class of
words/trees/nested words that can be recognized by a finite
word/tree/nested word automaton.

Recall: EBSP(S) says for each m, that a large S-structure
contains a small m-similar S-substructure.

Theorem

Let S be a regular language of words, trees (unordered, ordered or
ranked) or nested words. Then EBSP(S) holds with a computable
witness function (which is non-elementary, in general).
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m-partite cographs

Hlinĕný, Nes̆et̆ril, et al. introduced in 2012, the class of
m-partite cographs.

This class is a special class of bounded clique-width graphs,
and generalizes a number of important graph classes:

Cographs (1-partite cographs): complete graphs, complete
k -partite graphs, threshold graphs, Turan graphs, etc.

Bounded tree-depth graphs

Bounded shrub-depth graphs

All of the above classes are of active current interest for their
excellent algorithmic and logical properties.
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m-partite cographs and its subclasses satisfy EBSP

Theorem

Let S be a hereditary subclass of any of the following graph
classes. Then EBSP(S) holds with a computable witness function.
For classes with bounded parameters as below, there exist
elementary witness functions.

1 the class of m-partite cographs

2 any graph class of bounded shrub-depth

3 any graph class of bounded tree-depth

4 the class of cographs
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Well-quasi-ordering and EBSP

Definition

A class S of structures is said to be w.q.o. under embedding if for
every infinite set {A1,A2, . . .} of structures of S, there exist i , j
such that Ai is embeddable in Aj .

Theorem

Let S be w.q.o. under embedding. Then EBSP(S) is true (with
uncomputable witness functions in general).

Applications: The following classes satisfy EBSP(S):

k -letter graphs for each k (e.g. threshold graphs, unbounded
interval graphs)

k -uniform graphs for each k
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Constructing new classes satisfying EBSP
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Operations on structures

a

b

c d

e1

e2 e3

e4

e1

e2 e3

e4

line

a

b c

d a

b c

d

complement

a

b c

d a

b c

d

transpose
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Operations on structures

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 tG2

disjoint union

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 ./ G2

join
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Operations on structures

(b, 3) (a, 2)

parallel
connect

series
connect

a

b
c

d

f

e

a

b

c

e

a

b c

f

e

G1 G2

G1 ‖ G2 G1 +G2
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Operations on structures

(a, 1)

(a, 2) (a, 3)

(b, 2) (b, 3)

(a, 4)

(b, 4)(b, 1)

(a, 1)

(b, 3)

(b, 4)

(a, 2)

(a, 3)(b, 2)

(b, 1)(a, 4)

G1 G2

G1 ⊗G2

Cartesian product
G1 ×G2

tensor product

1

2 3

4a

b
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Generating graphs using trees of operations

×

K2 ‖

⊗ ⊗

K2 ‖

line K2

./

t K1

K1 K2

‖ K2

K2 line

./

K1 t

K2 K1

K1 = single vertex; K2 = single edge
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Closure of EBSP under operations on structures

Theorem

Given a class S, let Z be any one of the following classes.

1 Complement(S)

2 Transpose(S)

3 Line(S)

Then the following are true:

EBSP(S)→ EBSP(Z)

If EBSP(S) holds with a computable/elementary witness
function, then so does EBSP(Z).
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Closure of EBSP under operations on structures

Theorem

Given classes S1 and S2, let Z be any one of the following classes.

1. Disjoint-union(S1, S2)

3. Series-connect(S1, S2)

5. Cartesian-product(S1, S2)

2. Join(S1, S2)

4. Parallel-connect(S1, S2)

6. Tensor-product(S1, S2)

Then the following are true:(
EBSP(S1) ∧ EBSP(S2)

)
→ EBSP(Z)

If the conjuncts in the antecedent hold with computable/
elementary witness functions, then so does the consequent.
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An overview of classes satisfying EBSP

EBSP

Posets

1. Words
2. Trees

a. Unordered
b. Ordered
c. Ranked

3. Nested words

Graphs

1. Cographs
2. Bounded tree-depth graphs
3. Bounded shrub-depth graphs
4. m-partite cographs
5. Graphs w.q.o. under embedding

Classes generated using

1. Unary operations
a. complement
b. transpose
c. line

2. Binary operations
a. disjoint union
b. join
c. series-connect
d. parallel-connect
e. Cartesian product
f. tensor product
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Techniques and f.p.t. algorithms
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Illustrative example: Cographs

Generated from point graphs using disjoint union and join.

G(G1 tG2) =

G1 = G2 =

Cograph G and its cotree tGdisjoint union = t; join = ./

(G1 ./ G2) =
tG

./

t

b c

./ a d

e f

./

t

b a f

c d e
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Some model-theoretic facts

Fact 1

The set ∆m of equivalence classes of the m-similarity relation is
finite. Further, there is a computable function Λ : N→ N such
that |∆m | ≤ Λ(m).
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Some model-theoretic facts

Fact 2

Each of t and ./ satisfies monotonicity properties.

G

H

G tH

G ./ H

⊆

⊆

⊆ ⊆
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Some model-theoretic facts

Fact 2

Each of t and ./ satisfies monotonicity properties.

G1 H1

G2 H2

G1 tH1

G2 tH2

G1 ./ H1

G2 ./ H2

⊆ ⊆ ⊆ ⊆
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Some model-theoretic facts

Fact 3

Each of t and ./ satisfies a Feferman-Vaught kind composition
property.

G1 H1

G2 H2

G1 tH1

G2 tH2

≡m ≡m ≡m

G1 ./ H1

G2 ./ H2

≡m
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Some model-theoretic facts

Fact 3

Feferman-Vaught kind composition property of t and ./:
There exist composition functions fm , gm : (∆m ×∆m)→ ∆m

such that if δm(G) is the m-similarity class of G , then

δm(G1 tG2) = fm
(
δm(G1), δm(G2)

)

δm(G1 ./ G2) = gm
(
δm(G1), δm(G2)

)
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Proof of EBSP for cographs

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β5 β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm

β5 = gm(β3, β4) = δm(G)
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Proof of EBSP for cographs

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

1. Gs ⊆ Gt (by monotonicity)

2. Gs ≡m Gt (by composition)
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Proof of EBSP for cographs

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

1. Gs ⊆ Gt (by monotonicity)

2. Gs ≡m Gt (by composition)

Iterate to get a “rainbow” subtree in which no root-to-leaf path has
repeated labels. This subtree represents the desired substructure.�
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Algorithmic meta-theorems for EBSP classes

The described technique works for any class of structures that
admits “good” tree representations – those which use
operations that satisfy monotonicity and composition.

The composition functions can be computed for any m.

For any structure and any m, the rainbow subtree can be
obtained in time linear in the size of the tree representation of
the structure. This subtree represents a small uniform kernel
for all FO [m] properties of the original structure.

Theorem

Let S be a class of structures admitting good tree representations.
Then there exists a linear time f.p.t. algorithm for FO model
checking over S, provided input structures are given in the form of
their tree representations.
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Connection with fractals

CSL 2017, Stockholm, August 24, 2017



Fractals

Mathematical objects that exhibit self-similarity at all scales.

Appear widely in Nature.

Fern leaf
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Fractals

Mathematical objects that exhibit self-similarity at all scales.

Appear widely in Nature.

Conch shell
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Fractals

Mathematical objects that exhibit self-similarity at all scales.

Appear widely in Nature.

Romanesco cauliflower
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if
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〈2〉

〈3〉

〈4〉
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if

∀A ∈ S ∀m ∈ N

A

〈1〉

〈2〉

〈3〉

〈4〉
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if

∀A ∈ S ∀m ∈ N

A

If |A| ∈ 〈i〉, then
∀j < i

〈1〉

〈2〉

〈3〉

〈4〉
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if

∀A ∈ S ∀m ∈ N

A

∃Bj ⊆ A, Bj ∈ S

B3 If |A| ∈ 〈i〉, then

B2

B1

∀j < i

〈1〉

〈2〉

〈3〉

〈4〉
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if

∀A ∈ S ∀m ∈ N

A

∃Bj ⊆ A, Bj ∈ S

(i) |Bj| ∈ 〈j〉

B3 If |A| ∈ 〈i〉, then

B2

B1

∀j < i

〈1〉

〈2〉

〈3〉

〈4〉
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A strengthening of EBSP

Definition

Given a class S of finite structures, we say EBSP#(S) holds if

∀A ∈ S ∀m ∈ N

A

∃Bj ⊆ A, Bj ∈ S

(i) |Bj| ∈ 〈j〉
(ii) Bj is m-similar to A

B3

≡m

≡m
If |A| ∈ 〈i〉, then

B2

B1

≡m

≡m

∀j < i

〈1〉

〈2〉

〈3〉

〈4〉
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EBSP# – a fractal-like property

∀A ∈ S ∀m ∈ N

A

∃Bj ⊆ A, Bj ∈ S

(i) |Bj| ∈ 〈j〉
(ii) Bj is m-similar to A

B3

≡m

≡m
If |A| ∈ 〈i〉, then

B2

B1

≡m

≡m

∀j < i

〈1〉

〈2〉

〈3〉

〈4〉

EBSP# indeed asserts logical self-similarity at all scales.

All the classes seen so far can be shown to satisfy EBSP#.

Whereby all these classes can be regarded as logical fractals!
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A
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All the classes seen so far can be shown to satisfy EBSP#.

Whereby all these classes can be regarded as
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Conclusion
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Summary of the talk

EBSP provides a unifying framework to study a diverse
spectrum of interesting classes of finite structures.

EBSP remains preserved under a variety of natural operations
on structures.

Our techniques used to prove EBSP provide a unified
approach for obtaining algorithmic meta-theorems for several
interesting classes.

EBSP has a natural strengthening to a logical fractal property
that is enjoyed by all EBSP classes we have investigated.

The downward Löwenheim-Skolem theorem is strongly
prevalent in computer science!
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Open questions

Can we prove a finitary compactness theorem for EBSP
classes? And go further towards a Lindström’s theorem too?

What classes of structures satisfy variants of EBSP in which
the “substructure” is replaced with other relations (subgraph,
homomorphic embedding, minor, etc.)?

Under what conditions is the index of the m-similarity relation
over the class, an elementary function of m?

Is there a structural characterization of EBSP/logical fractals?

What classes of structures admit the EBSP/logical fractal
property “with high probability”?

Can we create logical versions of fractal concepts such as
fractal dimension, renormalization, etc.?
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Tack s̊a mycket!
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Löwenheim-Skolem property. In Proceedings of CSL 2017,
Stockholm, Sweden, August 20-24, 2017, Vol. 82, pages 37:1 -
37:21, 2017.

A. Sankaran, B. Adsul, and S. Chakraborty. A generalization of
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