Feferman-Vaught decompositions for prefix classes of first order logic

Abhisekh Sankaran
University of Cambridge

ICLA 2021

March 5, 2021

Introduction

- The Feferman-Vaught (FV) theorem from model theory gives a method to evaluate a first order (FO) sentence on a disjoint union of structures by providing other FO sentences to evaluate on the individual structures, and combining the results of the evaluations using a propositional formula.
- Historically: First shown for direct products (Mostowski, 1952) and later for generalized products (Feferman-Vaught, 1967)
- Numerous applications in computer science and finite model theory: decidability of theories, satisfiability checking, preservation theorems, algorithmic metatheorems
- FV decompositions over disjoint union for a sentence φ can be non-elementarily larger than φ.
- In special cases, can be computed in elementary time: Bounded degree structures and full FO (3-fold exp); FO[2] and all structures (2-fold exp.)

Tree generalization of prenex formulae: $\mathrm{T} \Sigma_{n}$ and $\mathrm{T} \Pi_{n}$

- Let Σ_{n}, resp. $\Pi_{n}=$ FO formulae in prenex normal form (PNF) with n quantifier blocks beginning with an \exists block, resp. \forall block. The quantifier-free parts are assumed to be in negation normal form (NNF).
- We define a "tree" generalization of Σ_{n} and Π_{n} formulae, denoted $T \Sigma_{n}$ and $T \Pi_{n}$ resp., as follows:

$$
\begin{aligned}
\mathrm{T} \Sigma_{0}=\mathrm{T} \Pi_{0} & \Leftrightarrow \text { quantifier-free formulae in NNF } \\
\varphi \in \mathrm{T} \Sigma_{n} & \Leftrightarrow \begin{cases}\varphi=\bigwedge \psi_{i} & \text { where } \psi_{i} \in \mathrm{~T}_{n-1} \mathrm{OR} \\
\varphi=\exists x \psi & \text { where } \psi \in \mathrm{T} \Sigma_{n}\end{cases} \\
\varphi \in \mathrm{T} \Pi_{n} & \Leftrightarrow \begin{cases}\varphi=\bigvee \psi_{i} & \text { where } \psi_{i} \in \mathrm{~T}_{n-1} \mathrm{OR} \\
\varphi=\forall x \psi & \text { where } \psi \in \mathrm{T}_{n}\end{cases}
\end{aligned}
$$

- Let $T \Sigma_{n}[m]$ and $T \Pi_{n}[m]$ resp. denote the subclasses of $\mathrm{T} \Sigma_{n}$ and $\mathrm{T} \Pi_{n}$ having formulae of rank at most m.

Example: a $\mathrm{T} \Sigma_{3}[4]$ formula

$\mathrm{T} \Sigma_{0}=\mathrm{T} \Pi_{0} \quad \Leftrightarrow \quad$ quantifier-free formulae in NNF

$$
\begin{aligned}
\varphi \in \mathrm{T} \Sigma_{n} & \Leftrightarrow \begin{cases}\varphi=\bigwedge \psi_{i} & \text { where } \psi_{i} \in \mathrm{~T}_{n-1} \mathrm{OR} \\
\varphi=\exists x \psi & \text { where } \psi \in \mathrm{T} \Sigma_{n}\end{cases} \\
\varphi \in \mathrm{T}_{n} & \Leftrightarrow \begin{cases}\varphi=\bigvee \psi_{i} & \text { where } \psi_{i} \in \mathrm{~T} \Sigma_{n-1} \mathrm{OR} \\
\varphi=\forall x \psi & \text { where } \psi \in \mathrm{T}_{n}\end{cases}
\end{aligned}
$$

Feferman-Vaught decompositions

- Let $\mathcal{L} \in\left\{\mathrm{T}_{n}[m], \mathrm{T}_{n}[m]\right\}$. Let $\Delta_{j}=\left(\psi_{1, j}, \ldots, \psi_{r, j}\right)$ for $j \in\{1,2\}$ be a sequence of \mathcal{L} sentences.
- For $i \in\{1, \ldots, r\}$ and $j \in\{1,2\}$, let $X_{i, j}$ be a propositional variable. Let X be the set of all $X_{i, j} \mathrm{~s}$, and β be a propositional formula over X.
- The triple $D=\left(\Delta_{1}, \Delta_{2}, \beta\right)$ is called an \mathcal{L}-reduction sequence.
- For disjoint structures \mathcal{A}_{1} and \mathcal{A}_{2}, we say $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right) \vDash D$ if there exists an assignment $\mu: \mathcal{X} \rightarrow\{0,1\}$ such that:

$$
\mu \vDash \beta \text { and } \mathcal{A}_{j} \vDash \psi_{i, j} \leftrightarrow \mu\left(X_{i, j}\right)=1 \text { for } j \in\{1,2\}
$$

- We now say D is a Feferman-Vaught decomposition of an \mathcal{L} sentence φ (over disjoint union), if for disjoint structures \mathcal{A}_{1} and \mathcal{A}_{2}, it holds that

$$
\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right) \vDash \varphi \leftrightarrow\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right) \vDash D
$$

Main results

Theorem

For every $\mathrm{T} \Sigma_{n}[m]\left(\mathrm{T} \Pi_{n}[m]\right)$ sentence φ, there is a $\mathrm{T} \Sigma_{n}[m]$ reduction sequence ($\mathrm{T} \Pi_{n}[m]$-reduction sequence) D such that:

1. D is a Feferman-Vaught decomposition of φ.
2. D can be computed from φ in time tower $\left(n, O\left((n+1) \cdot|\varphi|^{2}\right)\right)$ and the size of D is tower $(n, O((n+1) \cdot|\varphi|))$.

Corollary

Let $\mathcal{L} \in\left\{\mathrm{T} \Sigma_{n}, \mathrm{~T} \Pi_{n}\right\}$. For structures \mathcal{A}_{1} and \mathcal{A}_{2}, the $\mathcal{L}[m]$ theory of $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is determined by the $\mathcal{L}[m]$ theories of \mathcal{A}_{1} and \mathcal{A}_{2}.

Proposition

Let $\mathcal{L} \in\left\{T \Sigma_{n}, \mathrm{~T} \Pi_{n}\right\}$ and τ be a vocabulary consisting of predicates of arity $\leq p$. Then upto equivalence, the number of $\mathcal{L}[m]$ formulae $\varphi(\bar{x})$ over τ with $|\bar{x}|=t$, is tower $\left(n+2,|\tau| \cdot(n+1) \cdot(m+t)^{p}\right)$.

Future work

- Various parameterized problems, like k-Vertex cover, k-Clique, k-Dominating Set, belong to $\mathrm{T} \Sigma_{n}[m]$ with $n=2$.
- It is known that the model checking problem for FO (also MSO) sentences φ over graphs G of bounded clique-width can be solved in time $f(|\varphi|) \cdot|G|^{r}$ (indeed with $r=1$).
- However f above is inherently a non-elementary function of $|\varphi|$ (even for finite trees which have clique-width at most 3).
- The elementary number of formulae in $\mathrm{T} \Sigma_{n}[m]$ and $T \Pi_{n}[m]$ motivates the following question:

Question

For any fixed $k, n \geq 0$, does there exist an algorithm that, given a graph G of clique-width at most k and a $\mathrm{T} \Sigma_{n}$ or $\mathrm{T} \Pi_{n}$ sentence φ, decides whether G satisfies φ in time $f(|\varphi|) \cdot|G|^{r}$ for $r \geq 0$ and f is an elementary function of $|\varphi|$?
|| Dhanyavād! ||

References I

