Feferman-Vaught decompositions for prefix classes of first order logic

Abhisekh Sankaran University of Cambridge

ICLA 2021

March 5, 2021

Introduction

- The Feferman-Vaught (FV) theorem from model theory gives a method to evaluate a first order (FO) sentence on a disjoint union of structures by providing other FO sentences to evaluate on the individual structures, and combining the results of the evaluations using a propositional formula.
- Historically: First shown for direct products (Mostowski, 1952) and later for generalized products (Feferman-Vaught, 1967)
- Numerous applications in computer science and finite model theory: decidability of theories, satisfiability checking, preservation theorems, algorithmic metatheorems
- FV decompositions over disjoint union for a sentence φ can be non-elementarily larger than φ.
- In special cases, can be computed in elementary time: Bounded degree structures and full FO (3-fold exp); FO[2] and all structures (2-fold exp.)

Tree generalization of prenex formulae: $T\Sigma_n$ and $T\Pi_n$

- Let Σ_n, resp. Π_n = FO formulae in prenex normal form (PNF) with n quantifier blocks beginning with an ∃ block, resp. ∀ block. The quantifier-free parts are assumed to be in negation normal form (NNF).
- We define a "tree" generalization of Σ_n and Π_n formulae, denoted TΣ_n and TΠ_n resp., as follows:

 $\begin{array}{lll} \mathrm{T}\Sigma_{0} = \mathrm{T}\Pi_{0} & \Leftrightarrow & \mbox{quantifier-free formulae in NNF} \\ \varphi \in \mathrm{T}\Sigma_{n} & \Leftrightarrow & \begin{cases} \varphi = \bigwedge \psi_{i} & \mbox{where } \psi_{i} \in \mathrm{T}\Pi_{n-1} & \mbox{OR} \\ \varphi = \exists x \psi & \mbox{where } \psi \in \mathrm{T}\Sigma_{n} \\ \varphi \in \mathrm{T}\Pi_{n} & \Leftrightarrow & \begin{cases} \varphi = \bigvee \psi_{i} & \mbox{where } \psi_{i} \in \mathrm{T}\Sigma_{n-1} & \mbox{OR} \\ \varphi = \forall x \psi & \mbox{where } \psi \in \mathrm{T}\Pi_{n} \end{cases} \end{array}$

• Let $T\Sigma_n[m]$ and $T\Pi_n[m]$ resp. denote the subclasses of $T\Sigma_n$ and $T\Pi_n$ having formulae of rank at most m.

ICLA, March 5, 2021

Example: a $T\Sigma_3[4]$ formula

$$\begin{split} \mathrm{T}\Sigma_{0} &= \mathrm{T}\Pi_{0} & \Leftrightarrow & \text{quantifier-free formulae in NNF} \\ \varphi \in \mathrm{T}\Sigma_{n} & \Leftrightarrow & \begin{cases} \varphi &= \bigwedge \psi_{i} \; \text{ where } \psi_{i} \in \mathrm{T}\Pi_{n-1} \; \mathrm{OR} \\ \varphi &= \exists x \psi \; \text{ where } \psi \in \mathrm{T}\Sigma_{n} \\ \varphi &\in \mathrm{T}\Pi_{n} \; \Leftrightarrow \; \begin{cases} \varphi &= \bigvee \psi_{i} \; \text{ where } \psi_{i} \in \mathrm{T}\Sigma_{n-1} \; \mathrm{OR} \\ \varphi &= \forall x \psi \; \text{ where } \psi \in \mathrm{T}\Pi_{n} \end{cases} \end{split}$$

Feferman-Vaught decompositions

- Let $\mathcal{L} \in \{T\Sigma_n[m], T\Pi_n[m]\}$. Let $\Delta_j = (\psi_{1,j}, \dots, \psi_{r,j})$ for $j \in \{1, 2\}$ be a sequence of \mathcal{L} sentences.
- For $i \in \{1, \ldots, r\}$ and $j \in \{1, 2\}$, let $X_{i,j}$ be a propositional variable. Let \mathcal{X} be the set of all $X_{i,j}$ s, and β be a propositional formula over \mathcal{X} .
- The triple $D = (\Delta_1, \Delta_2, \beta)$ is called an \mathcal{L} -reduction sequence.
- For disjoint structures A₁ and A₂, we say (A₁, A₂) ⊨ D if there exists an assignment μ : X → {0,1} such that:

$$\mu \vDash \beta$$
 and $\mathcal{A}_j \vDash \psi_{i,j} \leftrightarrow \mu(X_{i,j}) = 1$ for $j \in \{1, 2\}$

 We now say D is a Feferman-Vaught decomposition of an L sentence φ (over disjoint union), if for disjoint structures A₁ and A₂, it holds that

$$(\mathcal{A}_1 \cup \mathcal{A}_2) \vDash \varphi \iff (\mathcal{A}_1, \mathcal{A}_2) \vDash D$$

A. Sankaran

ICLA, March 5, 2021

Main results

Theorem

For every $T\Sigma_n[m]$ ($T\Pi_n[m]$) sentence φ , there is a $T\Sigma_n[m]$ -reduction sequence ($T\Pi_n[m]$ -reduction sequence) D such that:

- 1. D is a Feferman-Vaught decomposition of φ .
- 2. *D* can be computed from φ in time tower $(n, O((n+1) \cdot |\varphi|^2))$ and the size of *D* is tower $(n, O((n+1) \cdot |\varphi|))$.

Corollary

Let $\mathcal{L} \in \{T\Sigma_n, T\Pi_n\}$. For structures \mathcal{A}_1 and \mathcal{A}_2 , the $\mathcal{L}[m]$ theory of $\mathcal{A}_1 \cup \mathcal{A}_2$ is determined by the $\mathcal{L}[m]$ theories of \mathcal{A}_1 and \mathcal{A}_2 .

Proposition

Let $\mathcal{L} \in \{T\Sigma_n, T\Pi_n\}$ and τ be a vocabulary consisting of predicates of arity $\leq p$. Then upto equivalence, the number of $\mathcal{L}[m]$ formulae $\varphi(\bar{x})$ over τ with $|\bar{x}| = t$, is tower $(n + 2, |\tau| \cdot (n + 1) \cdot (m + t)^p)$.

A. Sankaran

Future work

- Various parameterized problems, like k-Vertex cover, k-Clique, k-Dominating Set, belong to $T\Sigma_n[m]$ with n = 2.
- It is known that the model checking problem for FO (also MSO) sentences φ over graphs G of bounded clique-width can be solved in time $f(|\varphi|) \cdot |G|^r$ (indeed with r = 1).
- However f above is inherently a non-elementary function of $|\varphi|$ (even for finite trees which have clique-width at most 3).
- The elementary number of formulae in $T\Sigma_n[m]$ and $T\Pi_n[m]$ motivates the following question:

Question

For any fixed $k, n \ge 0$, does there exist an algorithm that, given a graph G of clique-width at most k and a $T\Sigma_n$ or $T\Pi_n$ sentence φ , decides whether G satisfies φ in time $f(|\varphi|) \cdot |G|^r$ for $r \ge 0$ and f is an elementary function of $|\varphi|$?

A. Sankaran

|| Dhanyavad! ||

ICLA, March 5, 2021

References I