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Introduction

Preservation theorems have been one of the earliest areas of
study in classical model theory.

A preservation theorem characterizes (definable) classes of
structures closed under a given model theoretic operation.

Preservation under substructures/extensions ( Loś-Tarski
theorem), unions of chains, homomorphisms, etc.

Most preservation theorems fail in the finite.

Recent research (by Atserias, Dawar, Grohe, Kolaitis) has
focussed on “recovering” preservation results over special
classes of finite structures, like acyclic structures, those with
bounded degree, bounded tree-width etc.
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Talk outline: background and central question

Background (Prior work over arbitrary structures):

The classical  Loś-Tarski preservation theorem: PS = ∀∗

Preservation under substructures modulo k -cruxes (PSC (k))

Our generalization of the  Loś-Tarski theorem: PSC (k) = ∃k∀∗

Central question for this work

What classes S of finite structures satisfy PSC (k) = ∃k∀∗?
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Talk outline: present work

A logic-based combinatorial property Plogic(S, k)

Plogic(S, k) ensures PSC (k) = ∃k∀∗ over S

Interesting classes satisfying Plogic(S, k)

Graphs of bounded tree-depth
Poset trees
Co-graphs

Plogic(S, k) and well-quasi-orders

Conclusion

MFCS, Budapest, August 28, 2014



Some assumptions and notation for the talk

Assumptions:

First Order (FO) logic.

Relational vocabularies (i.e. only predicates).

Familiarity with Ehrenfeucht-Fräıssé games.

Notations:

∀∗ = ∀x1 . . . ∀xn(quantifier-free formula in x1, . . . xn)

∃k∀∗ = ∃x1 . . . ∃xk∀y1 . . . ∀yn(quantifier-free formula in
x1, . . . , xk , y1, . . . , yn)

A1 ⊆ A2 means A1 is a substructure of A2. For graphs, ⊆
means induced subgraph.

UA = universe of A.
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Background
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The  Loś-Tarski theorem

Definition 1 (Preservation under substructures)

Let U be a given class of structures. A sentence φ is said to be

preserved under substructures over U , abbreviated φ is PS over U ,

if for each structure A of U , we have
(

(A |= φ) ∧ (B ⊆ A) ∧ (B ∈ U)
)

→ (B |= φ).

E.g.: Let U = class of all undirected graphs. Let φ describe all
cliques, i.e. φ = ∀x∀yE (x , y). Then φ is PS over U .

In general, every ∀∗ sentence is PS .

Theorem 1 ( Loś-Tarski, 1949-50)

Over the class of all structures, PS = ∀∗
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Preservation under substructures modulo k -cruxes

Definition 2

Let U be a given class of structures. A sentence φ is said to be

preserved under substructures modulo k -cruxes over U , abbreviated

φ is PSC (k) over U , if for each structure A in U , if A |= φ, then

there is a subset C of UA, of size ≤ k , s.t.
(

(B ⊆ A) ∧ (C ⊆ UB) ∧ (B ∈ U)
)

→ B |= φ.

The set C is called a k -crux of A w.r.t. φ. If φ is clear from
context, we will call C as a k -crux of A.

Easy to see that PS = PSC (0).
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Example

Eg. Consider φ = ∃x∀yE (x , y).
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

a

b c
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Eg. Consider φ = ∃x∀yE (x , y).

M
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

N

M |= φ

N |= φ

a

b c
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

a

b c

Any witness for x is a 1-crux. Thus φ is PSC (1).
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

a
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There can be 1-cruxes that are not witnesses for x .
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

N |= φ

a

b cN
b is a witness for x

Any witness for x is a 1-crux. Thus φ is PSC (1).

There can be 1-cruxes that are not witnesses for x .
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

N |= φ

a

b c
N

b is the witness for x

Any witness for x is a 1-crux. Thus φ is PSC (1).

There can be 1-cruxes that are not witnesses for x .
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

a

b c a is the witness for x

Any witness for x is a 1-crux. Thus φ is PSC (1).

There can be 1-cruxes that are not witnesses for x .
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

a

b c

Any witness for x is a 1-crux. Thus φ is PSC (1).

There can be 1-cruxes that are not witnesses for x .

Observe that φ is not PS .
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Example

Eg. Consider φ = ∃x∀yE (x , y).

M

M |= φ

N

N 6|= φ

a

b c

Any witness for x is a 1-crux. Thus φ is PSC (1).

There can be 1-cruxes that are not witnesses for x .

Observe that φ is not PS .
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A generalization of the  Loś-Tarski theorem

Any ∃k∀∗ sentence φ is PSC (k) – the witnesses to the ∃
quantifiers of φ form a k -crux.
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A generalization of the  Loś-Tarski theorem

Any ∃k∀∗ sentence φ is PSC (k) – the witnesses to the ∃
quantifiers of φ form a k -crux.

Is the converse true?

MFCS, Budapest, August 28, 2014



A generalization of the  Loś-Tarski theorem

Any ∃k∀∗ sentence φ is PSC (k) – the witnesses to the ∃
quantifiers of φ form a k -crux.

Is the converse true? Yes!

Theorem 2

Over the class of all structures, PSC (k) = ∃k∀∗.
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A generalization of the  Loś-Tarski theorem

Any ∃k∀∗ sentence φ is PSC (k) – the witnesses to the ∃
quantifiers of φ form a k -crux.

Is the converse true? Yes!

Theorem 2

Over the class of all structures, PSC (k) = ∃k∀∗.

Note: Bootstrapping on  Loś-Tarski theorem does not work.

Main idea of proof: prove a dual formulation of the result.

The proof crucially uses α-saturated structures for α ≥ ω

(unlike  Loś-Tarski theorem which requires plain compactness).
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What happens in the finite?
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What happens in the finite?

Recall that the  Loś-Tarski theorem

fails over the class of all finite structures.

holds over special classes of finite structures like those that
are acyclic, of bounded degree or bounded tree-width (under
some closure assumptions).
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Failure of PSC (k) = ∃k∀∗ in the finite

Proposition 1

Over the class of all finite structures, PSC (k) ) ∃k∀∗ for all k .

Proposition 2

U = class of disjoint unions of undirected paths

φ = “ (∃≥3x deg(x ) ≤ 1)
∨

(∃≥2x deg(x ) = 0)”

Then φ is PSC (2) but φ 6↔ ∃2∀∗(. . .), over U .

U is acyclic, of degree ≤ 2, and closed under substructures
and disjoint unions. A similar failure can be shown over the
class of bounded tree-width graphs.

Summary: The classes identified by Atserias, Dawar and
Grohe satisfy PS = ∀∗ but not PSC (k) = ∃k∀∗ for k ≥ 2.
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Motivation of this work

Central question

Can we identify abstract structural properties of classes of finite
structures, that are satisfied by interesting classes, and that admit
PSC (k) = ∃k∀∗?
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Motivation of this work

Central question

Can we identify abstract structural properties of classes of finite
structures, that are satisfied by interesting classes, and that admit
PSC (k) = ∃k∀∗? And further, in effective form?

MFCS, Budapest, August 28, 2014



A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

A
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

∀W ⊆k UA

A

W
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

∀W ⊆k UA

A

W

∀m ∈
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

∀W ⊆k UA

A

W
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∀m ∈
∃B ⊆ A containing W
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

∀W ⊆k UA

A

W

B

∀m ∈
∃B ⊆ A containing W

(i) B ∈ S (ii) B ≡m A

(iii) |B| ≤ θk(m)
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A logic based combinatorial property

Definition 3

Given a class S and k ∈ N, we say that Plogic(S, k) holds if there

exists a function θk : N → N such that

∀A ∈ S

∀W ⊆k UA

A

W

B

∀m ∈
∃B ⊆ A containing W

(i) B ∈ S (ii) B ≡m A

(iii) |B| ≤ θk(m)

We call θk a witness function of Plogic(S, k).
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Plogic(S, k) and PSC (k) = ∃k∀∗

E.g.: Let S = class of all finite linear orders.

Any two linear orders of size 2m are m-equivalent.

Then Plogic(S, k) holds for all k , where θk (m) = max(2m , k).
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Plogic(S, k) and PSC (k) = ∃k∀∗

E.g.: Let S = class of all finite linear orders.

Any two linear orders of size 2m are m-equivalent.

Then Plogic(S, k) holds for all k , where θk (m) = max(2m , k).

Theorem 3

Let S be a class of finite structures and k ∈ N be such that

Plogic(S, k) holds. Then PSC (k) = ∃k∀∗ over S.

Furthermore, if the witness function is computable, then so is the

translation from PSC (k) to ∃k∀∗.
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Graphs of bounded tree-depth satisfy Plogic(·, k)
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Graphs of bounded tree-depth

Nešeťril and de Mendez introduced the notion of tree-depth of
an undirected graph.

Intuitively, the tree-depth of a graph G , denoted td(G), is a
measure of how far G is from being a star.

Formally, if G = (V ,E ) and Comp(G) = connected
components of G , then

td(G) =











1 if G is a single node

maxG′∈Comp(G) td(G
′) if G is disconnected

1 + min v∈V td(G \ v) otherwise
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Examples

1) Star

td(G) = 2

G
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Examples

1) Star : Tree-depth of a star = 2.

td(G) = 2

G
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Examples

1) Star : Tree-depth of a star = 2.

td(G) = 2

G

2) Path

td(G) = 3

G

MFCS, Budapest, August 28, 2014



Examples

1) Star : Tree-depth of a star = 2.

td(G) = 2

G

2) Path : Tree-depth of a d length path ≈ log2(d).

td(G) = 3

G
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Examples

1) Star : Tree-depth of a star = 2.

td(G) = 2

G

2) Path : Tree-depth of a d length path ≈ log2(d).

td(G) = 3

G

3) Cliques

G

td(G) = 4
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Examples

1) Star : Tree-depth of a star = 2.

td(G) = 2

G

2) Path : Tree-depth of a d length path ≈ log2(d).

td(G) = 3

G

3) Cliques : Cliques have unbounded tree-depth.

G

td(G) = 4
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Bounded tree-depth graphs satisfy Plogic(·, k)

Theorem 4

Given n ∈ N, let S be any class of graphs having tree-depth ≤ n,

that is closed under induced subgraphs. Then ∀kPlogic(S, k) holds.

Further, there exists a computable witness function.

Bounded tree-depth classes also have bounded tree-width.

Atserias, Dawar and Grohe showed that for each n ∈ N, the
class of all graphs of tree-width ≤ n satisfies the  Loś-Tarski
theorem, and that in general, subclasses of this class do not
satisfy the  Loś-Tarski theorem.

However Theorem 4 identifies for each n ∈ N, an important
subclass of tree-width ≤ n graphs, satisfying not only the
 Loś-Tarski theorem, but also an effective generalization of it.
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Proof Idea for Theorem 4

A′

UA = {a, . . .}

pA = False

A

td(A) = n
td(A′) < n

a1 al

̂B = twin(B, a)

| ̂B| ≤ h(n− 1,m, τ̂)

a

τ = {E,U, p}
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Proof Idea for Theorem 4

A′

UA = {a, . . .}

pA = False

A

td(A) = n
td(A′) < n

̂A = twin(A, a)

U Â = UA \ {a}

pÂ = False

RÂ
E = {a1, . . . , al}

rÂU = True
a1 al

A′

̂B = twin(B, a)

td(A′) < n

| ̂B| ≤ h(n− 1,m, τ̂)

a

twin

τ = {E,U, p} τ̂ = {E,U, p,RE, rU}
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Proof Idea for Theorem 4

A′

UA = {a, . . .}

pA = False

A

td(A) = n
td(A′) < n

̂A = twin(A, a)

U Â = UA \ {a}

pÂ = False

RÂ
E = {a1, . . . , al}

rÂU = Truea1 al

A′

≡m,⊆Ind.
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̂B

U B̂ = {. . .}

pB̂ = False

RB̂
E = {ai1, . . . , aij}

rB̂U = True

B′

td(A′) < n

| ̂B| ≤ h(n− 1,m, τ̂)

a
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Proof Idea for Theorem 4

A′

UA = {a, . . .}

pA = False

A

td(A) = n
td(A′) < n

̂A = twin(A, a)

U Â = UA \ {a}

pÂ = False

RÂ
E = {a1, . . . , al}

rÂU = True
a1 al

A′

≡m,⊆Ind.
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̂B = twin(B, a)

U B̂ = {. . .}

pB̂ = False

RB̂
E = {ai1, . . . , aij}

rB̂U = True

B′

td(A′) < n

| ̂B| ≤ h(n− 1,m, τ̂)

a

twin

B′

UB = {a, . . .}

pB = False

B

ai1 aij

a

twin

| ̂B| ≤ 1 + h(n− 1,m, τ̂)

τ̂ = {E,U, p,RE, rU}τ = {E,U, p}
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Proof Idea for Theorem 4

A′

UA = {a, . . .}

pA = False

A

td(A) = n
td(A′) < n

̂A = twin(A, a)

U Â = UA \ {a}

pÂ = False

RÂ
E = {a1, . . . , al}

rÂU = True
a1 al

A′

≡m,⊆Ind.
hyp.

̂B = twin(B, a)

U B̂ = {. . .}

pB̂ = False

RB̂
E = {ai1, . . . , aij}

rB̂U = True

B′

td(A′) < n

| ̂B| ≤ h(n− 1,m, τ̂)

a

twin

B′

UB = {a, . . .}

pB = False

B

ai1 aij

a

≡m,⊆Transfer
lemma

twin

| ̂B| ≤ 1 + h(n− 1,m, τ̂)

τ = {E,U, p} τ̂ = {E,U, p,RE, rU}
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Classes of unbounded tree-depth satisfying

Plogic(·, k)
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Structures of unbounded tree-depth satisfying Plogic(S, k) -

Σ-trees

A Σ-tree is finite poset tree labeled with an alphabet Σ.

T = (P, λ)

{(1, 1), (2, 2), (3, 3), (4, 4)}

{(1, 2), (1, 3), (3, 4), (1, 4)}}

λ = {(1, a), (2, b), (3, b), (4, a)}}

⋃

P =

Hasse diagram of TNode 1 is the root of T

1

2 3

4

a

b b

aT

Let Trees(Σ) = class of all Σ-trees. Note: td(Trees(Σ)) = ω.

Theorem 5

Plogic(Trees(Σ), k) holds for each finite alphabet Σ and k ∈ N.

Further, there exists a computable witness function.
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Structures of unbounded tree-depth satisfying Plogic(S, k) -

Co-graphs

Co-graphs are defined inductively:

Base case: isolated vertices
Induction: If G1 and G2 are co-graphs, then so is the (i)
disjoint union G1 ⊔G2 and (ii) complement G1.

Examples of co-graphs include cliques, n-partite graphs, Turán
graphs, etc.

If CG = class of all co-graphs, then td(CG) = ω as Kn ∈ CG.

Theorem 6

Plogic(CG, k) holds for all k . Further, there exists a computable

witness function.
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Plogic(·, 0) and well-quasi-orders

A poset (A,≤) is said to be a well-quasi-order (w.q.o.) if for
all infinite sequences a1, a2, . . . from A, there exists i , j such
that i < j and ai ≤ aj . We say A is w.q.o. under ≤.

Eg. words and trees are respectively w.q.o. under (isomorphic)
embedding by Higman’s lemma and Kruskal’s tree theorem.

Theorem 7

If S is w.q.o. under embedding, then Plogic(S, 0) holds.

This result gives a “logic based” tool to prove non-w.q.o.-ness of
classes of structures under embedding!
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Conclusion

Summary:

A generalization of the  Loś-Tarski theorem: PSC (k) = ∃k∀∗

A logic-based combinatorial property Plogic(S, k), where S is
a class of finite structures and k ∈ N

Plogic(S, k) ensures PSC (k) = ∃k∀∗ over S

Interesting classes satisfying Plogic(S, k)

Plogic(S, k) and well-quasi-orders

Future work:
Investigate the boundaries of when PSC (k) = ∃k∀∗ holds over
classes of finite structures.
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