A Generalization of the Łoś-Tarski Preservation Theorem over Classes of Finite Structures

Abhisekh Sankaran

Joint work with Bharat Adsul and Supratik Chakraborty

IIT Bombay

MFCS, Budapest August 28, 2014

Introduction

- Preservation theorems have been one of the earliest areas of study in classical model theory.
- A preservation theorem characterizes (definable) classes of structures closed under a given model theoretic operation.
- Preservation under substructures/extensions (Łoś-Tarski theorem), unions of chains, homomorphisms, etc.
- Most preservation theorems fail in the finite.
- Recent research (by Atserias, Dawar, Grohe, Kolaitis) has focussed on "recovering" preservation results over special classes of finite structures, like acyclic structures, those with bounded degree, bounded tree-width etc.

Background (Prior work over arbitrary structures):

- The classical Łoś-Tarski preservation theorem: $PS = \forall^*$
- Preservation under substructures modulo k-cruxes (PSC(k))
- Our generalization of the Łoś-Tarski theorem: $PSC(k) = \exists^k \forall^*$

Central question for this work

What classes S of finite structures satisfy $PSC(k) = \exists^k \forall^*$?

- A logic-based combinatorial property $\mathcal{P}_{logic}(\mathcal{S},k)$
- $\mathcal{P}_{logic}(\mathcal{S},k)$ ensures $PSC(k) = \exists^k \forall^*$ over \mathcal{S}
- \bullet Interesting classes satisfying $\mathcal{P}_{logic}(\mathcal{S},k)$
 - Graphs of bounded tree-depth
 - Poset trees
 - Co-graphs
- $\mathcal{P}_{logic}(\mathcal{S},k)$ and well-quasi-orders
- Conclusion

Assumptions:

- First Order (FO) logic.
- Relational vocabularies (i.e. only predicates).
- Familiarity with Ehrenfeucht-Fraïssé games.

Notations:

- $\forall^* = \forall x_1 \dots \forall x_n (quantifier-free formula in x_1, \dots x_n)$
- $\exists^k \forall^* = \exists x_1 \dots \exists x_k \forall y_1 \dots \forall y_n$ (quantifier-free formula in $x_1, \dots, x_k, y_1, \dots, y_n$)
- 𝔅 𝔄₁ ⊆ 𝔅₂ means 𝔅₁ is a substructure of 𝔅₂. For graphs, ⊆ means *induced subgraph*.
- $U_{\mathfrak{A}} =$ universe of \mathfrak{A} .

Background

MFCS, Budapest, August 28, 2014

Definition 1 (Preservation under substructures)

Let \mathcal{U} be a given class of structures. A sentence ϕ is said to be preserved under substructures over \mathcal{U} , abbreviated ϕ is PS over \mathcal{U} , if for each structure \mathfrak{A} of \mathcal{U} , we have $((\mathfrak{A} \models \phi) \land (\mathfrak{B} \subseteq \mathfrak{A}) \land (\mathfrak{B} \in \mathcal{U})) \rightarrow (\mathfrak{B} \models \phi).$

- E.g.: Let $\mathcal{U} = \text{class of all undirected graphs.}$ Let ϕ describe all cliques, i.e. $\phi = \forall x \forall y E(x, y)$. Then ϕ is PS over \mathcal{U} .
- In general, every \forall^* sentence is PS.

Theorem 1 (Łoś-Tarski, 1949-50)

Over the class of all structures, $PS = \forall^*$

Let \mathcal{U} be a given class of structures. A sentence ϕ is said to be preserved under substructures modulo k-cruxes over \mathcal{U} , abbreviated ϕ is PSC(k) over \mathcal{U} , if for each structure \mathfrak{A} in \mathcal{U} , if $\mathfrak{A} \models \phi$, then there is a subset C of $U_{\mathfrak{A}}$, of size $\leq k$, s.t. $((\mathfrak{B} \subseteq \mathfrak{A}) \land (C \subseteq U_{\mathfrak{B}}) \land (\mathfrak{B} \in \mathcal{U})) \rightarrow \mathfrak{B} \models \phi$.

- The set C is called a k-crux of A w.r.t. φ. If φ is clear from context, we will call C as a k-crux of A.
- Easy to see that PS = PSC(0).

• Eg. Consider $\phi = \exists x \forall y E(x, y)$.

• Any witness for x is a 1-crux. Thus ϕ is PSC(1).

MFCS, Budapest, August 28, 2014

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.

• Eg. Consider $\phi = \exists x \forall y E(x, y)$.

 $N \models \phi$ b is a witness for x

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.

• Eg. Consider $\phi = \exists x \forall y E(x, y)$.

 $N \models \phi$
b is the witness for x

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.

• Eg. Consider $\phi = \exists x \forall y E(x, y)$.

a is the witness for x

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.
- Observe that ϕ is not PS.

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.
- Observe that ϕ is not PS.

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.
- Observe that ϕ is not PS. Then $PS \subsetneq PSC(1)$.

- Any witness for x is a 1-crux. Thus ϕ is PSC(1).
- There can be 1-cruxes that are not witnesses for x.
- Observe that ϕ is not *PS*. Then $PS \subsetneq PSC(1)$.

• Any $\exists^k \forall^*$ sentence ϕ is PSC(k) – the witnesses to the \exists quantifiers of ϕ form a k-crux.

- Any $\exists^k \forall^*$ sentence ϕ is PSC(k) the witnesses to the \exists quantifiers of ϕ form a k-crux.
- Is the converse true?

- Any $\exists^k \forall^*$ sentence ϕ is PSC(k) the witnesses to the \exists quantifiers of ϕ form a k-crux.
- Is the converse true? Yes!

Theorem 2

Over the class of all structures, $PSC(k) = \exists^k \forall^*$.

- Any $\exists^k \forall^*$ sentence ϕ is PSC(k) the witnesses to the \exists quantifiers of ϕ form a k-crux.
- Is the converse true? Yes!

Theorem 2

Over the class of all structures, $PSC(k) = \exists^k \forall^*$.

- Note: Bootstrapping on Łoś-Tarski theorem does not work.
- Main idea of proof: prove a dual formulation of the result.
- The proof crucially uses α-saturated structures for α ≥ ω (unlike Łoś-Tarski theorem which requires plain compactness).

What happens in the finite?

MFCS, Budapest, August 28, 2014

What happens in the finite?

Recall that the Łoś-Tarski theorem

- fails over the class of all finite structures.
- holds over special classes of finite structures like those that are acyclic, of bounded degree or bounded tree-width (under some closure assumptions).

Failure of $PSC(k) = \exists^k \forall^*$ in the finite

Proposition 1

Over the class of all finite structures, $PSC(k) \supseteq \exists^k \forall^*$ for all k.

Proposition 2

 $\begin{array}{ll} \mathcal{U} = & \textit{class of disjoint unions of undirected paths} \\ \phi = & ``(\exists_{\geq 3}x \deg(x) \leq 1) \bigvee (\exists_{\geq 2}x \deg(x) = 0)" \\ \textit{Then } \phi \textit{ is } PSC(2) \textit{ but } \phi \not\leftrightarrow \exists^2 \forall^*(\ldots), \textit{ over } \mathcal{U}. \end{array}$

- U is acyclic, of degree ≤ 2, and closed under substructures and disjoint unions. A similar failure can be shown over the class of bounded tree-width graphs.
- Summary: The classes identified by Atserias, Dawar and Grohe satisfy PS = ∀* but not PSC(k) = ∃^k∀* for k ≥ 2.

Central question

Can we identify abstract structural properties of classes of finite structures, that are satisfied by interesting classes, and that admit $PSC(k) = \exists^k \forall^*?$

Central question

Can we identify abstract structural properties of classes of finite structures, that are satisfied by interesting classes, and that admit $PSC(k) = \exists^k \forall^*$? And further, in effective form?

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

MFCS, Budapest, August 28, 2014

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

MFCS, Budapest, August 28, 2014

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

Given a class S and $k \in \mathbb{N}$, we say that $\mathcal{P}_{logic}(S, k)$ holds if there exists a function $\theta_k : \mathbb{N} \to \mathbb{N}$ such that

We call θ_k a witness function of $\mathcal{P}_{logic}(\mathcal{S}, k)$.

MFCS, Budapest, August 28, 2014

- E.g.: Let $\mathcal{S} = \text{class of all finite linear orders.}$
- Any two linear orders of size 2^m are *m*-equivalent.
- Then $\mathcal{P}_{logic}(\mathcal{S}, k)$ holds for all k, where $\theta_k(m) = \max(2^m, k)$.

- E.g.: Let $\mathcal{S} = \text{class of all finite linear orders.}$
- Any two linear orders of size 2^m are *m*-equivalent.
- Then $\mathcal{P}_{logic}(\mathcal{S}, k)$ holds for all k, where $\theta_k(m) = \max(2^m, k)$.

Theorem 3

Let S be a class of finite structures and $k \in \mathbb{N}$ be such that $\mathcal{P}_{logic}(S,k)$ holds. Then $PSC(k) = \exists^k \forall^*$ over S. Furthermore, if the witness function is computable, then so is the translation from PSC(k) to $\exists^k \forall^*$.

Graphs of bounded tree-depth satisfy $\mathcal{P}_{logic}(\cdot,k)$

MFCS, Budapest, August 28, 2014

Graphs of bounded tree-depth

- Nešetřil and de Mendez introduced the notion of *tree-depth* of an undirected graph.
- Intuitively, the tree-depth of a graph G, denoted td(G), is a measure of how far G is from being a star.
- Formally, if G = (V, E) and Comp(G) = connected components of <math>G, then

 $td(G) = \begin{cases} 1 & \text{if } G \text{ is a single node} \\ \max_{G' \in \mathsf{Comp}(G)} td(G') & \text{if } G \text{ is disconnected} \\ 1 + \min_{v \in V} td(G \setminus v) & \text{otherwise} \end{cases}$

1) Star

MFCS, Budapest, August 28, 2014

1) Star : Tree-depth of a star = 2.

2) Path

1) Star : Tree-depth of a star = 2.

1) Star : Tree-depth of a star = 2.

2) Path : Tree-depth of a d length path $\approx log_2(d)$.

1) Star : Tree-depth of a star = 2.

2) Path : Tree-depth of a d length path $\approx log_2(d)$.

3) Cliques

MFCS, Budapest, August 28, 2014

1) Star : Tree-depth of a star = 2.

2) Path : Tree-depth of a d length path $\approx log_2(d)$.

3) Cliques : Cliques have unbounded tree-depth.

MFCS, Budapest, August 28, 2014

Theorem 4

Given $n \in \mathbb{N}$, let S be any class of graphs having tree-depth $\leq n$, that is closed under induced subgraphs. Then $\forall k \mathcal{P}_{logic}(S, k)$ holds. Further, there exists a computable witness function.

- Bounded tree-depth classes also have bounded tree-width.
- Atserias, Dawar and Grohe showed that for each $n \in \mathbb{N}$, the class of all graphs of tree-width $\leq n$ satisfies the Łoś-Tarski theorem, and that in general, subclasses of this class do not satisfy the Łoś-Tarski theorem.
- However Theorem 4 identifies for each n ∈ N, an important subclass of tree-width ≤ n graphs, satisfying not only the Łoś-Tarski theorem, but also an effective generalization of it.

Classes of unbounded tree-depth satisfying $\mathcal{P}_{logic}(\cdot,k)$

MFCS, Budapest, August 28, 2014

Structures of unbounded tree-depth satisfying $\mathcal{P}_{logic}(\mathcal{S},k)$ - $\Sigma\text{-trees}$

• A Σ -tree is finite poset tree labeled with an alphabet Σ .

• Let $Trees(\Sigma) = class of all \Sigma$ -trees. Note: $td(Trees(\Sigma)) = \omega$.

Theorem 5

 $\mathcal{P}_{logic}(\text{Trees}(\Sigma), k)$ holds for each finite alphabet Σ and $k \in \mathbb{N}$. Further, there exists a computable witness function.

Structures of unbounded tree-depth satisfying $\mathcal{P}_{\textit{logic}}(\mathcal{S},k)$ - Co-graphs

• Co-graphs are defined inductively:

- Base case: isolated vertices
- Induction: If G₁ and G₂ are co-graphs, then so is the (i) disjoint union G₁ ⊔ G₂ and (ii) complement G
 ₁.
- Examples of co-graphs include cliques, *n*-partite graphs, Turán graphs, etc.
- If $CG = class of all co-graphs, then <math>td(CG) = \omega$ as $K_n \in CG$.

Theorem 6

 $\mathcal{P}_{logic}(CG, k)$ holds for all k. Further, there exists a computable witness function.

$\mathcal{P}_{\textit{logic}}(\cdot,0)$ and well-quasi-orders

- A poset (A, ≤) is said to be a *well-quasi-order* (w.q.o.) if for all infinite sequences a₁, a₂,... from A, there exists i, j such that i < j and a_i ≤ a_j. We say A is w.q.o. under ≤.
- Eg. words and trees are respectively w.q.o. under (isomorphic) embedding by Higman's lemma and Kruskal's tree theorem.

Theorem 7

If S is w.q.o. under embedding, then $\mathcal{P}_{logic}(S,0)$ holds.

This result gives a "logic based" tool to prove non-w.q.o.-ness of classes of structures under embedding!

Conclusion

Summary:

- A generalization of the Łoś-Tarski theorem: $PSC(k) = \exists^k \forall^*$
- A logic-based combinatorial property $\mathcal{P}_{logic}(\mathcal{S}, k)$, where \mathcal{S} is a class of finite structures and $k \in \mathbb{N}$
- $\mathcal{P}_{logic}(\mathcal{S},k)$ ensures $PSC(k) = \exists^k \forall^*$ over \mathcal{S}
- \bullet Interesting classes satisfying $\mathcal{P}_{logic}(\mathcal{S},k)$
- $\mathcal{P}_{logic}(\mathcal{S},k)$ and well-quasi-orders

Future work:

Investigate the boundaries of when $PSC(k)=\exists^k\forall^*$ holds over classes of finite structures.

Köszönöm!

Acknowledgements:

We would like to thank Ajit A. Diwan for insightful discussions.

MFCS, Budapest, August 28, 2014

References I

- A. Sankaran, B. Adsul and S. Chakraborty, A Generalization of the Łoś-Tarski Preservation Theorem over Classes of Finite Structures, MFCS 2014, Springer, pp. 474-485.
- A. Sankaran, B. Adsul and S. Chakraborty, Generalizations of the Łoś-Tarski Preservation Theorem, http://arxiv.org/abs/1302.4350, June 2013.
- A. Sankaran, B. Adsul, V. Madan, P. Kamath and S. Chakraborty, *Preservation under Substructures modulo Bounded Cores*, WoLLIC 2012, Springer, pp. 291-305.
- A. Atserias, A. Dawar and M. Grohe, Preservation under Extensions on Well-Behaved Finite Structures, SIAM Journal of Computing, 2008, Vol. 38, pp. 1364-1381.