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Introduction

Hereditariness is a well realized property in computer science.
E.g. cliques, bounded degree graphs, 3-colorable graphs,
graphs of bounded clique-width, etc.

The  Loś-Tarski theorem characterizes FO definable hereditary
properties in terms of universal sentences.

Historically significant: among the earliest applications of
Gödel’s Compactness theorem and opened the area of
preservation theorems in model theory.

Fails in the finite: there is a hereditary FO sentence that is
not equivalent to any universal sentence over all finite
structures (Gurevich-Shelah, 1984).

But already in 1959, Tait gave a different counterexample,
that turns out to be more powerful than known so far.
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Main results

Let Σn := ∃x̄1∀x̄2∃x̄3 . . .︸ ︷︷ ︸
n blocks

α(x̄1, . . . , x̄n) where α is quantifier-free.

Theorem

Tait’s counterexample is an FO sentence that is hereditary over all
finite structures, but is not equivalent over this class to any Σ3

sentence. Further, the negation of the counterexample can be
expressed in Datalog(6=,¬).

Theorem

For every n, there is a vocabulary τn and an FO(τn) sentence ϕn

that is hereditary over all finite structures, but that is not
equivalent over this class to any Σn sentence. Further, ¬ϕn can be
expressed in Datalog(6=,¬).
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sentence. Further, the negation of the counterexample can be
expressed in Datalog(6=,¬).

Theorem

No prefix classes of FO is expressive enough to capture:

FO-hereditariness in the finite

FO ∩ Datalog(6=,¬) queries in the finite
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Analysing Tait’s sentence
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Analysing Tait’s sentence: overview

The sentence

Showing hereditariness

Construction of a suitable class of models and non-models

Showing inexpressibility in Σ2, and then in Σ3

Showing expressibility of negation of the sentence in
Datalog(6=,¬)
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The sentence
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Tait’s sentence

Ψ := ξ1 ∧ ξ2 ∧ ξ3

ξ1 := ” ≤ is a linear order”

ξ2 := ∀u∀v S

⇒ No points between u and v

ξ3 := ∀u∀v
S SS S

R

← Forbidden!

u v

u v

No points in
these segments

∈ FO(σ) where σ = {≤, R, S}

A. Sankaran University of Oxford, UK, Nov 7, 2019 5/36



A model for Ψ

S S S S S S

R
RR
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Hereditariness of Tait’s sentence
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Ψ is hereditary

Suppose A |= Ψ where Ψ := ξ1 ∧ ξ2 ∧ ξ3, and B ⊆ A.
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Ψ is hereditary

Suppose A |= Ψ where Ψ := ξ1 ∧ ξ2 ∧ ξ3, and B ⊆ A.

Since ξ1 is universal, it is hereditary, so B |= ξ1.

As explained, B |= ξ2 and B |= ξ3; then B |= Ψ. �

S SS S

R

u v

B A |= ξ2A

Then A 6|= ξ3
- a contradiction.
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Stronger failure of  Loś-Tarski theorem in the finite

Proposition

The sentence Ψ, which is hereditary over all finite structures, is not
equivalent over this class to any Σ2 sentence.

Let Σ2,k = class of Σ2 sentences in which each block of
quantifiers has size k .

For each k , we construct a class A of models and a class B of
non-models of Ψ such that for each Σ2,k sentence θ, if there
is a model of θ in A, then there is a model of θ in B as well.

Denote the above condition as AV2,k B.

We illustrate our constructions for k = 3.
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Construction of
a class of models and a class of non-models
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Construction of classes A and B

E

D

Ci

Ci D E

R

E E

R

E E

S S S S

S S S S S

S S S S
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

D C1 C2 C3

S S S
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

C1 D C2 C3

S S S
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

C1 C2 C3 D

S S S

A = Class of all Ais; B = Class of all Bis
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A as a class of models of Ψ

C1 C2 C3 C4

S S S

Ai

Cj
R

E E

S S S S
E

S S S S
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A as a class of models of Ψ

C1 C2 C3 C4

S S S

Ai

Cj
R

E E

S S S S
E

S S S S

ξ1 := ” ≤ is a linear order”
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B as a class of non-models of Ψ

C1 D C3 C4

S S S

Bi

D
R

E E

S S S S
E

S S S S S
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B as a class of non-models of Ψ
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Inexpressibility in Σ2
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Towards showing AV2,3 B

For structures M1 and M2, denote by M1 ≡1,3 M2 that M1

and M2 agree on all sentences of Σ1,3.

The relation ≡1,3 is an equivalence relation (of finite index).

E.g.: any two linear orders of length ≥ 3 are ≡1,3-equivalent.

One can build pairs of ≡1,3-equivalent structures from given
such pairs using operators on structures that satisfy the
Feferman-Vaught (FV) composition property.

A binary operator ⊕ satisfies FV composition w.r.t. ≡1,3 if
the ≡1,3-class of M⊕N is completely determined by the
≡1,3-classes of M and N.

E.g.: the ordered sum of two (ordered) structures satisfies
FV-composition w.r.t. ≡1,3.
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Some ≡1,3-equivalences

Lemma

R

E E

S S S S

R

E E

S S S S

R

E E

S S S S

≡1,3

≡1,3≡1,3

Proof Sketch.

Using FV-composition for the ordered sum of linear orders equipped
with a full successor relation and colored endpoints, and the fact
that such linear orders of length ≥ 4 are ≡1,3-equivalent.
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Some ≡1,3-equivalences

Corollary

A2

C1 C2 C3 C4

S S S

A1

C′1 C′2 C′3 C′4

S S S

≡1,3
1.

A2

C1 C2 C3 C4

S S S

A1

C1 C2 C′3 C4

S S S

≡1,3
2.

a1

a1 a2 a3

a3a2
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Overview of proof approach for showing AV2,3 B

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.
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”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.

A. Sankaran University of Oxford, UK, Nov 7, 2019 15/36



Overview of proof approach for showing AV2,3 B

A

(A, ā1)
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”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.

A. Sankaran University of Oxford, UK, Nov 7, 2019 15/36



Overview of proof approach for showing AV2,3 B

A

(A, ā1)
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(A′, ā′1, ā
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(A′, ā′1, ā
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Models in B
|= θ

|= ∀x̄2α(x̄1, x̄2)

witness to
”∃x̄1” in θ

|= α(x̄1, x̄2) α(x̄1, x̄2)

∃x̄1∀x̄2α(x̄1, x̄2)

∀b̄2

witness to
”∃x̄1” in θ

Suppose

(α(x̄1, x̄2) – quantifier-free)

”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.
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witness to
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Proof approach as an Ehrenfeucht-Fräissé game

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

Players: Spoiler, Duplicator; Game arena: just structure A initially.

Round 1: Spoiler picks a 3-tuple ā1 from A. In response, Duplicator
first chooses B ∈ B; then picks a 3-tuple b̄1 from B.

Winning condition: Duplicator wins the round if A ' B under the
map ā1 7→ b̄1. Else Spoiler wins (this play of) the game.

A. Sankaran University of Oxford, UK, Nov 7, 2019 16/36



Proof approach as an Ehrenfeucht-Fräissé game

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

Round 2: Spoiler picks a 3-tuple b̄2 from B. In response, Duplicator
first chooses A′ ∈ A; then picks 3-tuples ā ′1, ā

′
2 from A′.

Winning condition: Duplicator wins the round and (this play of) the
game if (i) (A′, ā ′1) ≡1,3 (A, ā1); (ii) A′ ' B under (ā ′i 7→ b̄i)1≤i≤2.
(Else Spoiler wins.)
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Proof approach as an Ehrenfeucht-Fräissé game

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

Duplicator has a winning strategy in the game described if she wins
every play of the game.

Proposition

If Duplicator has winning strategy in the described game, then AV2,3 B.
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Executing proof approach for AV2,3 B: From A to B

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.
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Executing proof approach for AV2,3 B: From A to B

C1 C2 C3 C4

S S S

A
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C1 C2 C3 C4

S S S

A

∀ ā1 = (e1, e2, e3)

C1 C2 C3 C4

S S S

A

e1 e2 e3
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Executing proof approach for AV2,3 B: From A to B

C1 C2 C3 C4

S S S

A

∀ ā1 = (e1, e2, e3)

C1 C2 C3 C4

S S S

A

e1 e2 e3

(= e1) (= e2) (= e3)

C1 C2 D C4

S S S

B

f1 f2 f3
b̄1 = (f1, f2, f3)
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Executing proof approach for AV2,3 B: From A to B

C1 C2 C3 C4

S S S

A

∀

A ' B under ā1 7→ b̄1

ā1 = (e1, e2, e3)

C1 C2 C3 C4

S S S

A

e1 e2 e3

(= e1) (= e2) (= e3)

C1 C2 D C4

S S S

B

f1 f2 f3
b̄1 = (f1, f2, f3)
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Executing proof approach for AV2,3 B: From B to A

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.
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Executing proof approach for AV2,3 B: From B to A

C1 C2 D C4

S S S

B

f1 f2 f3
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Executing proof approach for AV2,3 B: From B to A

C1 C2 D C4

S S S

B

f1 f2 f3

R

E E

S S S S S

A. Sankaran University of Oxford, UK, Nov 7, 2019 20/36



Executing proof approach for AV2,3 B: From B to A

R

E E

S S S S S

C1 C2 D C4

S S S

B

f1 f2, f4 f3

C1 C2 D C4

S S S

B

f1 f2 f3

f5 f6

R

E E

S S S S S

∀ b̄2 = (f4, f5, f6)
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Executing proof approach for AV2,3 B: From B to A

R

E E

S S S S S

C1 C2 D C4

S S S

B

f1 f2, f4 f3

C1 C2 D C4

S S S

B

f1 f2 f3

f5 f6

R

E E

S S S S S

∀ b̄2 = (f4, f5, f6)
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Executing proof approach for AV2,3 B: From B to A

R

E E

S S S S

C1 C2 C′3 C4

S S S

A′

e′1 e′2, e
′
4 e′3

C1 C2 D C4

S S S

B

f1 f2, f4 f3

e′5 e′6

f5 f6R

E E

S S S S S
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Executing proof approach for AV2,3 B: From B to A

R

E E

S S S S

C1 C2 C′3 C4

S S S

A′

e′1 e′2, e
′
4 e′3

C1 C2 D C4

S S S

B

f1 f2, f4 f3

e′5 e′6

f5 f6R

E E

S S S S S

B ' A′ under (b̄i 7→ ā′i)1≤i≤2
ā′1 = (e′1, e

′
2, e
′
3) = b̄1

ā′2 = (e′4, e
′
5, e
′
6) = b̄2
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Executing proof approach for AV2,3 B: Showing
(A, ā1) ≡1,3 (A′, ā ′1)

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡1,3

Models in A

Models in B

∀b̄2

”A ' B under ā 7→ b̄” := ā 7→ b̄ is a partial isomorphism between A and B.
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Executing proof approach for AV2,3 B: Showing
(A, ā1) ≡1,3 (A′, ā ′1)

R

E E

S S S S

C1 C2 C′3 C4

S S S

A′
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′
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C1 C2 C′3 C4

S S S

A′

e′1 e′2 e′3

A. Sankaran University of Oxford, UK, Nov 7, 2019 22/36



Executing proof approach for AV2,3 B: Showing
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Executing proof approach for AV2,3 B: Showing
(A, ā1) ≡1,3 (A′, ā ′1)

e′1 = e1, e
′
2 = e2, e

′
3 = e3

C1 C2 C3 C4

S S S

A

e1 e2 e3

C1 C2 C′3 C4

S S S

A′

e′1 e′2 e′3
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≡1,3
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S S S
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e1 e2 e3
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S S S
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Inexpressibility in Σ3
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Even stronger failure of  Loś-Tarski theorem in the finite

Proposition

The sentence Ψ, which is hereditary over all finite structures, is not
equivalent over this class to any Σ3 sentence.

Let Σ3,k = class of Σ3 sentences in which each block of
quantifiers has size k .

For each k , we construct a class A of models and a class B of
non-models of Ψ such that AV3,k B holds: for each Σ3,k

sentence θ, if A contains a model of θ, then so does B.

We illustrate our constructions for k = 3.
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Construction of classes A and B

G

S S S S

F

S S S S S

Ci D E

D E F F F

S

F E

S S SS

R

Ci E G F F

S

F E

S S S S

R

E

S S S S S S S S
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G
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F E

S S SS

R
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F E

S S S S
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E

S S S S S S S S
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Construction of classes A and B

G

S S S S

F

S S S S S

Ci D E

D E F F F

S

F E

S S SS

R

Ci E F F F

S
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S S S S

R
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

D C2 C3 C4

S S S

A = Class of all Ais; B = Class of all Bis
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

C1 D C3 C4

S S S

A = Class of all Ais; B = Class of all Bis
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

C1 C2 D C3

S S S

A = Class of all Ais; B = Class of all Bis
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Construction of classes A and B

Bi

C1 C2 C3 C4

S S S

Ai

C1 C2 C3 D

S S S

A = Class of all Ais; B = Class of all Bis

Similarly as before, it can be shown that Ai |= Ψ and Bi |= ¬Ψ.
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Towards showing AV3,3 B

For structures M1 and M2, denote by M1 ≡2,3 M2 that M1

and M2 agree on all sentences of Σ2,3.

Lemma

The following equivalences hold for any i , j :

Ci ≡2,3 Cj

Ai ≡2,3 Aj

(A, ā) ≡2,3 (A′, ā) where ā is a 3-tuple and A′ is obtained
from A by replacing the Ci segment not touched by ā, with Cj
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Overview of proof approach for showing AV3,3 B

A

(A, ā1)

(A′, ā′1, ā
′
2) (B, b̄1, b̄2)

(B, b̄1)

∀ā1

∃

∃
A ' B under ā1 7→ b̄1

A′ ' B under (b̄i 7→ ā′i)1≤i≤2

≡2,3

Models in A

Models in B

∀b̄2

∃
(A′, ā′1, ā

′
2, ā
′
3)

∀ā′3
(B′, b̄′1, b̄

′
2, b̄
′
3)

≡1,3

A′ ' B′ under (b̄′i 7→ ā′i)1≤i≤3
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Expressibility in Datalog(6=,¬)
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Datalog syntax

A Datalog(6=,¬) rule is of one of the foll. forms:

R(x̄ ) ←− A(x̄1)
R(x̄ ) ←− R1(x̄1), . . . ,Rn(x̄n)

In the first rule above, A(x̄1) is an atom that can appear
negated. Also A can be equality or its negation.

In the second rule above, all predicates Ri that are not atoms
appear un-negated. Also, R can be one of the Ri s.

In both rules, the variables appearing in the LHS are a subset
of the variables appearing in the RHS.

A Datalog(6=,¬) program is a finite set of Datalog rules.
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Datalog model-theoretic semantics

Consider the following Datalog program:

R(x , y) ←− A(x , z ),B(z , y)
R(x , y) ←− ¬A(x , z ),R(x , y)

The first rule as a program by itself corresponds to

α(x , y) := ∃z (A(x , z ) ∧ B(z , y))

With both rules, the program corresponds to the existential
least fixpoint logic sentence β(x , y) given as below:

β(x , y) := LFPR,u,vϕ(R, u, v)](x , y)
ϕ(R, u, v) := α(u, v) ∨ ∃z (¬A(u, z ) ∧ R(u, v))

Datalog(6=,¬) corresponds exactly to existential least fixpoint
logic, and thus any Datalog( 6=,¬) program is extension closed.
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¬Ψ as a Datalog program

Ψ := ξ1 ∧ ξ2 ∧ ξ3

ξ1 := ” ≤ is a linear order”

ξ2 := ∀u∀v S

⇒ No points between u and v

ξ3 := ∀u∀v
S SS S

R

← Forbidden!

u v

u v

No points in
these segments

∈ FO(σ) where σ = {≤, R, S}

Express ¬ξ1,¬ξ2,¬ξ3 as Datalog programs P1,P2,P3 with “start
symbols”T1,T2,T3 resp. Then the Datalog program for ¬Ψ is

T ←− T1 | T2 | T3
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¬ξ1,¬ξ2 and ¬ξ3 as Datalog programs

ξ1 := “ ≤ is a linear order”

ξ1 := ∀x∀y∀z




x ≤ x ∧
(x ≤ y ∧ y ≤ x)→ x = y ∧
(x ≤ y ∧ y ≤ z)→ x ≤ z




Datalog program for ¬ξ1:
T1 ←− ¬x ≤ x |

x ≤ y, y ≤ x, x 6= y |
x ≤ y, y ≤ z, ¬ x ≤ z

¬ξ1 := ∃x∃y∃z




¬ x ≤ x ∨
(x ≤ y ∧ y ≤ x ∧ x 6= y) ∨
(x ≤ y ∧ y ≤ z ∧ ¬ x ≤ z)



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¬ξ1,¬ξ2 and ¬ξ3 as Datalog programs

ξ2 := ∀u∀v

⇒ No points in here
u v

S

ξ2 := ∀u∀v S(u, v)→ ¬∃z
(
u ≤ z ∧ z ≤ v ∧
u 6= z ∧ z 6= v

)

¬ξ2 := ∃u∃v S(u, v) ∧ ∃z
(
u ≤ z ∧ z ≤ v ∧
u 6= z ∧ z 6= v

)

Datalog program for ¬ξ2:

T2 ←− S(u, v), X(u, v)

X(u, v)←− u ≤ z, z ≤ v, u 6= z, z 6= v
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¬ξ1,¬ξ2 and ¬ξ3 as Datalog programs

ξ3 := ∀u∀v S SS S

R

Forbidden!

u v

No points in
these segments

¬ξ3 := ∃u∃v S SS S

R

u v

No points in
these segments

Datalog program for ¬ξ3:
T3 ←− R(v, u), S-reach(u, v)

S-reach(u, v)←− S(u, v) | S(u, z), S-reach(z, v)
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Generalizing Tait’s sentence
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Overview

Theorem

For every n, there is a vocabulary τn and an FO(τn) sentence ϕn

such that the following hold:

1 ϕn is hereditary over all finite structures, but is not equivalent
over this class to any Σn sentence.

2 ¬ϕn can be expressed in Datalog(6=,¬).

Construction of ϕn

Inexpressibility of ϕn in Σn using a suitable class of models
and non-models
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Construction of ϕn
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Construction of ϕn

Consider Ψ1(x , y) over σ1 = {≤,R1,S0,S1} as below.

Ψ1(x, y) := S1(x, y)→
(
ξ1

1(x, y) ∧ ξ1
2 ∧ ξ1

3

)

ξ11(x, y) := “ ≤ is a linear order” ∧

ξ13 := ∀u∀v

Forbidden!

“x is min and y is max under ≤”

ξ12 := ∀u∀v
↓

⇒ No points in here
u v

S0

S0 S0 S0

R1

u v

S0

No points in
these segments
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Construction of ϕn

Consider Ψ2(x , y) over σ2 = σ1 ∪ {P2,Q2,R2,S2} as below.

Ψ2(x, y) := S2(x, y)→
(
ξ2

1(x, y) ∧ ξ2
2 ∧ ξ2

3

)

ξ21(x, y) := “ ≤ is a linear order” ∧

ξ23 := ∀u∀v

Forbidden!

“x is min and y is max under ≤ ” ∧ P2(x) ∧Q2(y)

ξ22 := ∀u∀v
↓

No P2 or Q2 points in here

u v

S2

– Q2

– P2

u v

¬Ψ1

¬Ψ1 S2 S2

R2

u v

¬Ψ1

No P2 or Q2 points
in these segments

∨

⇒
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Construction of ϕn

Consider Ψn(x , y) over σn = σn−1 ∪ {Pn ,Qn ,Rn ,Sn} as below.

Ψn(x, y) := Sn(x, y)→
(
ξn1 (x, y) ∧ ξn2 ∧ ξn3

)

ξn1 (x, y) := “ ≤ is a linear order” ∧

ξn3 := ∀u∀v

Forbidden!

“x is min and y is max under ≤ ” ∧ Pn(x) ∧Qn(y)

ξn2 := ∀u∀v
↓

No Pn or Qn points in here

u v

Sn

– Qn

– Pn

u v

¬Ψn−1

¬Ψn−1 Sn Sn

Rn

u v

¬Ψn−1

No Pn or Qn points
in these segments

∨

⇒

A. Sankaran University of Oxford, UK, Nov 7, 2019 32/36



Construction of ϕn

Ψn(x, y) := Sn(x, y)→
(
ξn1 (x, y) ∧ ξn2 ∧ ξn3

)

ξn1 (x, y) := “ ≤ is a linear order” ∧

ξn3 := ∀u∀v

Forbidden!

“x is min and y is max under ≤ ” ∧ Pn(x) ∧Qn(y)

ξn2 := ∀u∀v
↓

No Pn or Qn points in here

u v

Sn

– Qn

– Pn

u v

¬Ψn−1

¬Ψn−1 Sn Sn

Rn

u v

¬Ψn−1

No Pn or Qn points
in these segments

∨

⇒

ϕn := Ψn(x, y)[x 7→ c; y 7→ d] for constants c, d
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Inexpressibility of ϕn in Σ2n

Theorem

The following are true of Ψn(x , y), and therefore also of ϕn :

1 ¬Ψn(x , y) is expressible in Datalog( 6=,¬) and hence Ψn(x , y)
is hereditary over all finite structures.

2 Ψn(x , y) is not equivalent to any Σ2n formula.

Define Σ2n,k analogously to Σ2,k and for formulae.

For each k , we construct a class An of models and a class Bn

of non-models of Ψn(x , y) such that An V2n,k Bn holds: for
each Σ2n,k formula θ(x , y), if An contains a model of θ(x , y),
then so does Bn .

We again illustrate our constructions for k = 3.
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Construction of An and Bn
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Construction of An and Bn : Structures at level 1

E1

D1

C1
i

C1i D1 E1

S1 S1 S1 S1

R1

E1
E1

S1 S1 S1 S1 S1

R1

E1
E1

S1 S1 S1 S1S1 S1

r = 23·2n + 1
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Construction of An and Bn : Structures at level 1

C1
1 C1

2 C1
3 C1

4

S0

S1

A1
i

S0 S0

C1
1 C1

2 C1
3
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S0 S0
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Construction of An and Bn : Structures at level 1

C1
1 C1

2 C1
3 C1

4

S0

S1

A1
i

S0 S0

A1 = Class of all A1
i s; B1 = Class of all B1

i s

C1
1 C1

2 C1
3

S0

S1

B1
i

S0 S0

C1
4D
1

ax ay
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Construction of An and Bn : Structures at level n

r = 23·2n + 1

– Pn – Qn

Cn
i En

1 Bn−1
1 Bn−1

2

Sn

Bn−1
4 En

2

Sn Sn Sn Sn

Rn

Dn
i En

1 Bn−1
1 Bn−1

2 Bn−1
3

Sn

Bn−1
4 En

2

Sn Sn Sn Sn

Rn

An−1
1 Bn−1

3

En
i Bn−1

1 Bn−1
2 Bn−1

r−1 Bn−1
r

Sn Sn

Cni Dn
i Eni
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Construction of An and Bn : Structures at level n

Cn
1 Cn

2 Cn
3 Cn

4

Sn

Sn

An
i

Sn Sn

Cn
1 Cn

2 Cn
3 Cn

4

Sn

Sn

Bn
i

Sn Sn

Dn
1

An = Class of all An
i s; Bn = Class of all Bn

i s

ax ay

bx by

It can be shown that
(An

i , ax , ay) |= Ψn(x , y)
(Bn

i , bx , by) |= ¬Ψn(x , y)
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Conclusion
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Future directions

The formula Ψn is over a vocabulary σn that grows with n.

Further, σn can be seen as the vocabulary of ordered vertex
colored graphs with multiple edge relations.

Open question 1.

Is there a fixed (finite) vocabulary σ∗ such that prefix classes fail to
capture FO(σ∗) expressible hereditary properties?

Open question 2.

Do prefix classes fail to capture hereditary properties of undirected
graphs (possibly vertex colored)? In particular, does  Loś-Tarski
theorem continue to fail over these graphs?
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Thank you!
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