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Fixed parameter tractability

Fixed parameter tractability (f.p.t.) is a subarea of algorithms
introduced by Downey and Fellows in the mid-80s, to solve
hard problems by identifying and fixing parameters.

One of the approaches to getting f.p.t. algorithms is
kernelization, in which a given problem instance is
preprocessed to obtain a smaller structure, analysing which
yields an answer to given problem instance.

Algorithmic meta-theorems are a class of f.p.t. results that
provide uniform algorithms for checking over a given graph
class, any property of graphs that can be expressed in a logic.

Starting with Courcelle’s theorem (1990), algorithmic meta-
theorems have been very well-studied and are being actively
investigated in the context of sparse and dense graph classes.
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Feferman-Vaught composition

In the 1950s, Tarski asked the following of his students in
Berkeley: Given the FO theories of structures A and B, what
can be said about the FO theories of A tB and A×B?

Building upon the work of Mostowski, Feferman and Vaught
showed that the FO theories of A and B completely determine
FO theories of A tB and A×B.

Subsequently, the above composition property was shown for
various natural operations on structures and various logics.

The first algorithmic application of the composition property
was MSO characterization of regular languages by Büchi
(1960). Subsequently, it has been used to prove the
decidability of various theories, and algorithmic meta-theorems
for various graph classes.
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Background from logic
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FO and MSO

First order logic (FO):

E (x , y) | x = y | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∃xϕ | ∀xϕ

E.g.: 2-vertex cover:

∃x1∃x2∀y1∀y2

(
(x1 6= x2) ∧ (E (y1, y2)→ ∨

i ,j∈{1,2} yi = xj )

)

Monadic second order logic (MSO):

E (x , y) | x = y | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ¬ϕ | ∃xϕ | ∀xϕ | ∃Xϕ | ∀Xϕ

E.g.: 3-colourability:
∃X1∃X2∃X3

(
∀x ∨1≤i<j≤3 ¬(Xi(x ) ∧Xj (x ))

∧

∀x∀y E (x , y)→ ∧
1≤i≤3 ¬(Xi(x ) ∧Xi(y))

)
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Quantifier rank of a formula

The quantifier rank, or simply, rank of a formula is the
maximum nesting depth of quantifiers appearing in it.

E.g. the rank of the sentence for 2-vertex cover is 4, while the
3-colourability sentence has rank 5 (though number of
quantifiers is 6).

Let L denote FO or MSO, and let L[m] be the class of all L
sentences of rank at most m.

Fact

The number of non-equivalent L[m] sentences is finite, and
further, bounded by a computable function of m.
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L[m]-similarity of graphs

We say graphs G and H are L[m]-similar, denoted
G ≡m,L H , if no sentence of L[m] distinguishes G and H .

A

B

a

b c

A and B are FO[1]-similar, but not FO[2]-similar.

≡1

≡1
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L[m]-similarity of graphs

We say graphs G and H are L[m]-similar, denoted
G ≡m,L H , if no sentence of L[m] distinguishes G and H .

The finiteness of L[m] upto equivalence implies the following.

Fact

The set ∆m of equivalence classes of the L[m]-similarity relation is
finite. Further, there is a computable function Λ : N→ N such
that |∆m | ≤ Λ(m).
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Feferman-Vaught composition
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Feferman-Vaught composition property

Definition

Given a class S of graphs and an n-ary operation Op : Sn → S, we
say Op satisfies the Feferman-Vaught L-composition property, or
simply, L-composition, if the following holds:

G1 G2 · · · Gn

H1 H2 · · · Hn

Op(G1, G2, . . . , Gn)

≡m,L ≡m,L ≡m,L

Op(H1, H2, . . . , Hn)

≡m,L
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Feferman-Vaught composition property

Definition

Given a class S of graphs and an n-ary operation Op : Sn → S, we
say Op satisfies L-composition, if there exists a composition
function f(Op,m) : (∆m)n → ∆m such that if δm(G) is the
L[m]-similarity class of G , then

δm(Op(G1, . . . ,Gn)) = f(Op,m)(δm(G1), . . . , δm(Gn))
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Operations satisfying MSO-composition

a

b c

d a

b c

d

complement

a

b c

d a

b c

d

transpose
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Operations satisfying MSO-composition

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 tG2

disjoint union

a

b

c

d

e

a

b

c

d

e

G1 G2 G1 ./ G2

join
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Operations satisfying MSO-composition

(b, 3) (a, 2)

parallel
connect

series
connect

a

b
c

d

f

e

a

b

c

e

a

b c

f

e

G1 G2

G1 ‖ G2 G1 +G2
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Operations satisfying FO-composition

(a, 1)

(a, 2) (a, 3)

(b, 2) (b, 3)

(a, 4)

(b, 4)(b, 1)

(a, 1)

(b, 3)

(b, 4)

(a, 2)

(a, 3)(b, 2)

(b, 1)(a, 4)

G1 G2

G1 ⊗G2

Cartesian product
G1 ×G2

tensor product

1

2 3

4a

b
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Composite operations satisfying composition

×

K2 ‖

⊗ ⊗

K2 ‖

line K2

./

t K1

K1 K2

‖ K2

K2 line

./

K1 t

K2 K1

K1 = single vertex; K2 = single edge
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Kernels for cographs using L-composition
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Cographs

Generated from point graphs using disjoint union and join.

G(G1 tG2) =

G1 = G2 =

Cograph G and its cotree tGdisjoint union = t; join = ./

(G1 ./ G2) =
tG

./

t

b c

./ a d

e f

./

t

b a f

c d e
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Revisiting model-theoretic facts

Recall the following facts.

Fact 1

The set ∆m of equivalence classes of the L[m]-similarity relation is
finite. Further, there is a computable function Λ : N→ N such
that |∆m | ≤ Λ(m).

Fact 2

Each of t and ./ satisfies L-composition. That is, there exist
composition functions fm , gm : (∆m ×∆m)→ ∆m for t, ./ resp.
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1

β1 = δm
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β1 = δm

β2 = gm(β1, β1) = δm
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3

β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm
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Kernelizing procedure for a fixed quantifier rank

Step I: Label bottom up in the cotree, each node z with the
m-similarity class of the graph represented by the tree rooted at z .

G

tG

./

t

b c

./ a d

e f

./

t

b a f

c d e

β1 β1 β1 β1

β1 β1β2 β2

β3β4

β5 β1 = δm

β2 = gm(β1, β1) = δm

β3 = fm(β1, β1) = δm

β4 = fm(β2, β2) = δm

β5 = gm(β3, β4) = δm(G)
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Kernelization procedure for a fixed quantifier rank

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

1. Gs ⊆ Gt (by monotonicity)

2. Gs ≡m Gt (by composition)
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Kernelization procedure for a fixed quantifier rank

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

Gs ≡m,L Gt (by composition)

Iterate to get a “rainbow” subtree in which no root-to-leaf path has
repeated labels. This subtree represents an L[m]-similar cograph of
size ≤ 2Λ(m). �
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An additional fact about t and ./

Fact

Each of t and ./ has the following “⊆-monotonicity” properties.

G

H

G tH

G ./ H

⊆

⊆

⊆ ⊆

G1 H1

G2 H2

G1 tH1

G2 tH2

G1 ./ H1

G2 ./ H2

⊆ ⊆ ⊆ ⊆

A. Sankaran Parameterized Complexity Week, IMSc, October 26, 2017 16/37



Kernelization procedure revisited

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

1. Gs ⊆ Gt (by monotonicity)

2. Gs ≡m Gt (by composition)
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Kernelization procedure revisited

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

Gs ≡m,L Gt (by composition)

Gs ⊆ Gt (by monotonicity)
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Kernelization procedure revisited

Step II: Perform graftings in the cotree whenever a root-to-leaf
path has repeated labels.

Replace subtree rooted at v

with subtree rooted at w

v

w

y

x

β

β

w

x

path p

t s

Gs ≡m,L Gt (by composition)

Gs ⊆ Gt (by monotonicity)

Iterate to get a “rainbow” subtree in which no root-to-leaf path has
repeated labels. This subtree represents an L[m]-similar induced
sub-cograph of size ≤ 2Λ(m). �
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Computing the composition functions

We do this in two stages:

1 Compute the list L[m]-classes of L[m] sentences representing
the equivalence classes of the ≡m,L relation over cographs.

2 For each δ1, δ2 ∈ L[m]-classes, determine fm(δ1, δ2) and
gm(δ1, δ2).

We crucially use the following lemma that follows from the
kernelization procedure just described.

Lemma

L has the small model property over cographs. Whereby

L-SAT is decidable over cographs.

There is an algorithm that produces a model for every
satisfiable L sentence.
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Stage I: Computing L[m]-classes

Use the inductive definition of L to enumerate a set X of
L[m] sentences, which represents all L[m] sentences upto
equivalence.

Construct the set Z of “L[m]-complete” sentences such that
all models of any such sentence are L[m]-similar.

For every sentence of Z, decide if it is satisfiable over
cographs. If it is, then the sentence represents an equivalence
class of the ≡m,L relation over cographs.

The set of satisfiable sentences above is indeed the list
L[m]-classes.
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Stage II: Computing fm and gm

Consider δ1, δ2 ∈ L[m]-classes.

Since each is satisfiable over cographs, generate models
A1,A2 for these resp.

Construct cotrees t1, t2 for A1,A2 resp. (This is actually
doable in linear time.)

Construct the tree sf , resp. sg , by making t1 and t2 the child
subtrees of a new root node labeled with t, resp. ./.

Determine δf , δg ∈ L[m]-classes such that the cograph
represented by sf , resp. sg , models δf , resp. δg .

Then fm(δ1, δ2) = δf and gm(δ1, δ2) = δg (by the
L-composition property of t and ./).

A. Sankaran Parameterized Complexity Week, IMSc, October 26, 2017 20/37



Kernelization for cographs

Let Λ(m) = |L[m]-classes| be the index of ≡m,L over cographs.

Theorem

There is an f.p.t. algorithm A and a computable function
ρ : N→ N such that given a cograph G and m ∈ N, algorithm A

outputs an L[m]-similar cograph H of size ≤ 2Λ(m) in time
ρ(m)× |G |. The graph H is thus a “uniform kernel” for all L[m]
properties of G . Further, H can be constructed to be an induced
subgraph of G .

Corollary (Algorithmic meta-theorem for cographs)

There is a linear time f.p.t. algorithm for L model checking over
cographs, where the size of the L sentence is the parameter.
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Generalizing the cograph results
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Abstracting from the cograph results

The methods for cographs work seamlessly for any graph class
that admits operators satisfying composition that enable
constructing the graphs of the class from simple graphs.

Whereby, we get kernelization and algorithmic meta-theorems
for model checking, if the tree representations of the graphs
can be computed in polynomial time.

The kernel sizes are exponential in the index of the ≡m,L

relation over the class (The price to pay for uniform kernels!).

If the operators further satisfy �-monotonicity with respect to
a graph relation � (such as: induced subgraph, subgraph,
homomorphic image, minor, etc.), then the kernel obtained is
also �-related to the given graph.
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m-partite cographs

Hlinĕný, Nes̆et̆ril, et al. introduced in 2012, a special class of
bounded clique-width graphs, called m-partite cographs.

An m-partite cograph G is a graph that has an m-partite
cotree representation t:

fx = fz = 0

fy = 1

fv( , ) = 1, else 0

fw( , ) = 1, else 0

cb

e fd

a

t

d f

a c

b e

x y

zv

w

2 2 1 2

1 1
G

Label set = {1, 2}

2 2

1 1
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Important subclasses of m-partite cographs

Cographs (1-partite cographs): complete graphs, complete
k -partite graphs, threshold graphs, Turan graphs, etc.

Bounded tree-depth graphs

Bounded shrub-depth graphs

Bounded SC-depth graphs

All of the above classes are of active current interest for their
excellent algorithmic and logical properties!
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Composition operators for m-partite cographs

For each m-partite cograph, fix an m-partite cotree, and let C

be the class of labeled versions of the m-partite cographs
given by their chosen cotrees.

For f : [1,m]2 → {0, 1}, define ⊗f : C2 → C such that if t, s
are m-partite cotrees for inputs G ,H resp., then ⊗f (G ,H ) is
the labeled m-partite cograph given by the tree obtained by
making t and s, child subtrees of a new root node labeled f .

By an Ehrenfeucht-Fräissé game argument, ⊗f can be shown
to satisfy L-composition.

Further ⊗f satisfies ⊆-monotonicity, where ⊆= induced
subgraph.
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Kernelization for m-partite cographs and its subclasses

Let Λ(n) = index of ≡n,L over C (where C is as defined earlier).

Theorem

Let S be a hereditary subclass of m-partite cographs. Given G ∈ S

and n ∈ N, there is an L[n]-uniform kernel H in S, of size ≤ 2Λ(n)

that is computable in f.p.t linear time, provided G is given by its
m-partite cotree in C. Further, H is an induced subgraph of G .

Corollary

The same statement as above holds of the following classes.
Further, for all these classes, the kernel sizes are elementary in n.

1 Any hereditary class of graphs of bounded shrub-depth.

2 Any hereditary class of graphs of bounded SC-depth.

3 Any hereditary class of graphs of bounded tree-depth.
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Graphs of bounded clique-width

The notion of clique-width was introduced by Courcelle,
Engelfriet and Rozenberg in 1993.

Defined in terms of the following 4 operations on labeled
graphs whose labels belong to {1, . . . , k}:

1 Create vertex with label i : “i(v)”

2 Disjoint union of labeled graphs G and H : “G tH ”

3 Join i -labeled vertices to j -labeled vertices, i 6= j : “η(i , j )”

4 Relabel label i to label j : “ν(i , j )”

A k -expression is a tree formed from the above operations.

The clique-width of a graph G is the minimum k for which
there exists a k -expression which when applied to point
graphs, yields G .
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Clique width: example

G

a b

2 3

e f

t

η(1, 2)

t t

t

t

1 3

c d

1 2

ν(1, 3)

η(2, 3)

a b c

def

3-expression for G
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Clique-width and other graphs

Cographs are exactly clique-width 2 graphs.

m-partite cographs have clique-width ≤ 2m.

Any graph of tree-width k has clique-width ≤ 3 · 2k−1. Thus
graphs of bounded tree-width have bounded clique-width too.

The NLC-width of a graph is related to its clique-width as:
NLC-wd(G) ≤ cwd(G) ≤ 2 · NLC-wd(G). Whereby, bounded
NLC-width = bounded clique-width.

The rank-width of a graph and its clique-width are related as:
rwd(G) ≤ cwd(G) ≤ 21+rwd(G) − 1. Whereby, bounded
rank-width = bounded clique-width.
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Kernelization for bounded clique-width graphs

Each of the operations used in defining clique-width satisfies
L-composition. This again follows by an Ehrenfeucht - Fräissé
game argument.

There is a polynomial time algorithm (by Oum and Seymour)
that, given as input a graph of clique-width k , outputs a
(23k+2 − 1)-expression for the graph.

Proposition

Let S be the class of graphs of clique-width ≤ k and Λ(n) be the
index of the ≡n,L relation over labeled graphs having labels in
{1, . . . , 23k+2 − 1}. Then given G ∈ S and n ∈ N, there is an
L[n]-uniform kernel H in S, of size ≤ 2Λ(n) that is computable in
f.p.t linear time.
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Implication for well-quasi-ordered classes
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Well-quasi-ordering

Definition

Given a class S of graphs and a binary relation � on S, we say S is
w.q.o. under � if for every infinite set {A1,A2, . . .} of graphs of S,
there exist i , j such that Ai � Aj .

Words are w.q.o. under subword (Higman, 1952).

Trees are w.q.o. under subtree (Kruskal, 1960).

The class of graphs that exclude Pk as a subgraph is w.q.o.
under subgraph (Ding, 1992)

All finite graphs are w.q.o. under minor (Robertson and
Seymour, 2004).

m-partite cographs are w.q.o. under induced subgraph
(Hlinĕný, Nes̆et̆ril, et al., 2012).
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L-composition bounds sizes of forbidden graphs

Proposition

Let S be a graph class that admits tree representations using
operators satisfying L-composition and �-monotonicity.

Let Λ(n)
be the index of the ≡n,L relation over S. If S is w.q.o. under �,
then every �-hereditary subclass of S, that is L definable, is
determined by a finite list of forbidden graphs of S, each of size
≤ 2Λ(n). Whereby, the size of the finite list is also bounded by
22Λ(n)

.

The above result therefore holds of the various classes seen earlier.
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L-composition bounds sizes of forbidden graphs
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Bootstrapping on kernels
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A closer look at what we have so far

So far we considered graph classes that, for a given set of
operations satisfying composition and monotonicity, are
generated using all trees labeled with the operations, and
applied to point graphs.

The class of all trees over a given alphabet forms a trivial
regular language.

And point graphs form a trivial class of graphs admitting
kernelization.

How about generalizing these two scenarios?
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Regular languages of operation trees

Let S be a graph class that admits L[n]-uniform �-related
kernels in S, of size ≤ ρ(n) for a binary relation � on S and a
(computable) function ρ : N→ N.

Let O be a set of operations on S, satisfying L-composition
and �-monotonicity.

Let d be the maximum arity and t be the maximum
dimension of any operation of O.

Let O-trees be the class of all trees over O and Γ(r) be the
index of the ≡r ,MSO relation over this class.

Let T be a regular subclass of O-trees that is defined by an
MSO sentence of rank r .
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Kernel bootstrapping using regular tree languages

Theorem

Let Z be the graph class obtained by “applying” the trees of T to
the graphs of S. Let Λ(n) be the index of the ≡n,L relation over
Z. Then the following holds:

For every n ∈ N and every graph G ∈ Z given in the form of its
tree representation over O, there is an L[n]-uniform kernel H in Z,
that is computable in f.p.t time, and that is of size ≤ η(1) where
for 1 ≤ h ≤ Λ(n)× Γ(r), we have η(h) = (d · η(h + 1))t , and
η(Λ(n)× Γ(r)) = ρ(n). Further, H is �-related to G .
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Conclusion
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Summary

Background from logic

Feferman-Vaught composition

Kernels for cographs

Generalizations

Implications for well-quasi-ordered classes

Bootstrapping on kernels
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Future direction

Open question

Is there a class of graphs of unbounded clique-width that can be
generated using operations satisfying composition?

If so, that would disprove (the long-standing) conjecture by Seese
that decidability of MSO-SAT implies bounded clique-width!
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Mikka Nandri!
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