Revisiting the generalized Łoś-Tarski theorem

Abhisekh Sankaran University of Cambridge

ICLA 2019

IIT Delhi

March 5, 2019

Introduction

- The Łoś-Tarski theorem is a result from classical model theory characterizing FO definable extension-closed properties in terms of existential sentences.
- Historically significant:
 - constituted the earliest applications of Compactness theorem
 - set the trend for a host of preservation theorems, for not only FO but even its extensions
- The theorem fails in the finite: there is an ext.-closed FO sentence that is not equivalent to any existential sentence over all finite structures.
- This inspired investigating algorithmically important classes of structures to "recover" the theorem: classes of bounded degree, bounded tree-width, and bounded clique-width.

The Generalized Łoś-Tarski theorem

- Adsul, Chakraborty and S. proved a generalized Łoś-Tarski theorem (GLT(k)) by introducing and characterizing a parameterized generalization of ext.-closure.
- This property called k-ext.-closure semantically characterizes Π_2 sentences whose leading block contains k quantifiers.
- GLT(k) provides finer characterizations of the Π₂ class than those in the literature, further via a combinatorial notion.
- Fails over all finite structures: the semantic property evades capture by its corresponding syntactic class for each k.
- Has been recovered over various classes of posets (words, trees, nested words) and subclasses of bounded clique-width graphs (tree-depth/shrub-depth, *m*-partite cographs).

GLT(k) over arbitrary structures

A new and simpler proof of GLT(k) that avoids using λ -saturated structures by constructing just the "required saturation".

Łoś-Tarski theorem over finite structures

For each k, an FO sentence that is ext.-closed over all finite structures but that is not equivalent over this class to any Π_2 sentence containing k universal quantifiers.

Some notation for the talk

- $\exists^* := \exists x_1 \dots \exists x_n \alpha(x_1, \dots, x_n)$ for some n; α quantifier-free.
- $\forall^k \exists^* := \forall x_1 \dots \forall x_k \exists y_1 \dots \exists y_n \alpha(x_1, \dots, x_k, y_1, \dots, y_n)$
- $\Pi_2 := \bigcup_{k \geq 0} \forall^k \exists^*$
- $\mathcal{A}_1 \subseteq \mathcal{A}_2 := \mathcal{A}_1$ is a substructure of \mathcal{A}_2 .
- $\mathcal{A}_1 \equiv \mathcal{A}_2 := \mathcal{A}_1$ and \mathcal{A}_2 agree on all FO sentences
- $\mathcal{A}_1 \preceq \mathcal{A}_2 := \mathcal{A}_2$ is an elementary extension of \mathcal{A}_1 .

The generalized Łoś-Tarski theorem: GLT(k)

ICLA '19, IIT Delhi, March 3, 2019

Classical preservation properties

Definition

A sentence φ is said to be extension closed if

$$(\mathcal{A} \models \varphi \land \mathcal{A} \subseteq \mathcal{B}) \to \mathcal{B} \models \varphi.$$

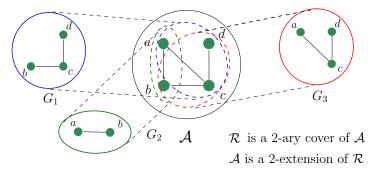
- E.g.: $\varphi :=$ "There is a triangle in the graph".
- Every \exists^* sentence is ext.-closed.

Theorem (Łoś-Tarski, 1954-55)

Over arbitrary (finite + infinite) structures, a sentence is ext.-closed iff it is equivalent to an \exists^* sentence.

Definition

For $k \in \mathbb{N}$ and a structure \mathcal{A} , a set \mathcal{R} of substructures of \mathcal{A} is called a *k*-ary cover of \mathcal{A} if every set C of $\leq k$ elements of \mathcal{A} is contained in some structure of \mathcal{R} . We call \mathcal{A} a *k*-extension of \mathcal{R} .



Definition

For $k \in \mathbb{N}$ and a structure \mathcal{A} , a set \mathcal{R} of substructures of \mathcal{A} is called a *k*-ary cover of \mathcal{A} if every set C of $\leq k$ elements of \mathcal{A} is contained in some structure of \mathcal{R} . We call \mathcal{A} a *k*-extension of \mathcal{R} .

Definition

A sentence φ is said to be *k*-extension closed if for each collection \mathcal{R} of models of φ , if \mathcal{A} is a *k*-extension of \mathcal{R} , then $\mathcal{A} \models \varphi$.

• Every $\forall^k \exists^*$ sentence is k-ext.-closed.

Theorem (Adsul-Chakraborty-S., 2016)

Over arbitrary (finite + infinite) structures, a sentence is k-ext. closed iff it is equivalent to a $\forall^k \exists^*$ sentence.

$\mathsf{Proving}\ \mathsf{GLT}(k)$

ICLA '19, IIT Delhi, March 3, 2019

Proof outline for GLT(k)

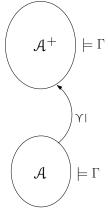
• Given φ that is k-ext. closed, let

$$\Gamma = \{\psi \mid \psi \in \forall^k \exists^* \text{ and } \varphi \to \psi\}$$

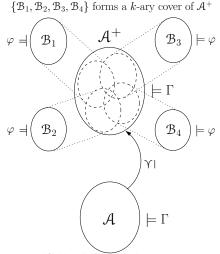
- Then $\varphi \to \Gamma$.
- Show that $\Gamma \to \varphi$. Which implies $\varphi \leftrightarrow \Gamma$.
- By Compactness theorem, there is a finite subset Γ' of Γ such that $\varphi \leftrightarrow \Gamma'$.
- A finite conjunction of ∀k∃* sentences is equivalent to a ∀k∃* sentence.

A. Sankaran

ICLA '19, IIT Delhi, March 3, 2019



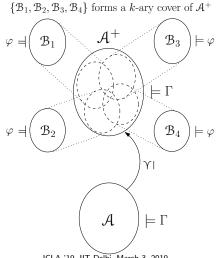
ICLA '19, IIT Delhi, March 3, 2019



A. Sankaran

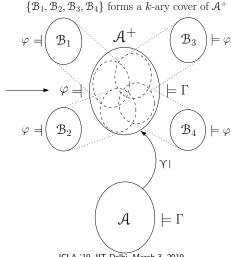
ICLA '19, IIT Delhi, March 3, 2019

 $\rightarrow \varphi$ is k-ext. closed \leftarrow



ICLA '19, IIT Delhi, March 3, 2019

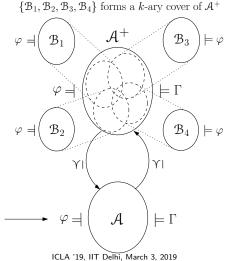
 φ is k-ext. closed



A. Sankaran

ICLA '19, IIT Delhi, March 3, 2019

 φ is k-ext. closed

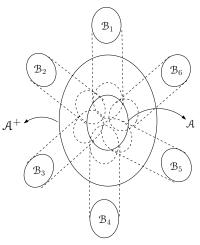


A. Sankaran

So how does one construct \mathcal{A}^+ ?

Generalized k-ary covers

- Instead of requiring "self-contained" k-ary covers, we allow for k-ary covers of a structure in an extension of it.
- In the figure alongside, each B_i ⊆ A⁺ and every k-tuple of A is contained in some B_i.



 $\{B_1, B_2, B_3, B_4, B_5, B_6\}$ forms a k-ary cover of A in A^+

Lemma (*)

For any structure \mathcal{M} that models Γ , there exists an elementary extension \mathcal{N} of \mathcal{M} and a k-ary cover \mathcal{R} of \mathcal{M} in \mathcal{N} , consisting of models of φ .

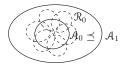
$$\label{eq:relation} \begin{split} & \mathcal{R} \text{ is a } k\text{-ary cover of } \mathcal{M} \text{ in } \mathcal{N} \\ & \text{consisting of models of } \varphi \end{split}$$

Lemma (*)

$$\bigcirc \mathcal{A}_0 = \mathcal{A} \models \Gamma$$

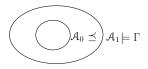
Lemma (*)

For any structure \mathcal{M} that models Γ , there exists an elementary extension \mathcal{N} of \mathcal{M} and a k-ary cover \mathcal{R} of \mathcal{M} in \mathcal{N} , consisting of models of φ .



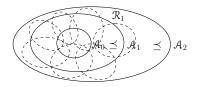
 \mathcal{R}_0 is a k-ary cover of \mathcal{A}_0 in \mathcal{A}_1 consisting of models of φ

Lemma (*)



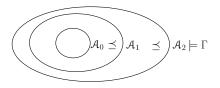
Lemma (*)

For any structure \mathcal{M} that models Γ , there exists an elementary extension \mathcal{N} of \mathcal{M} and a k-ary cover \mathcal{R} of \mathcal{M} in \mathcal{N} , consisting of models of φ .

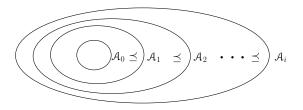


 \mathcal{R}_1 is a k-ary cover of \mathcal{A}_1 in \mathcal{A}_2 consisting of models of φ

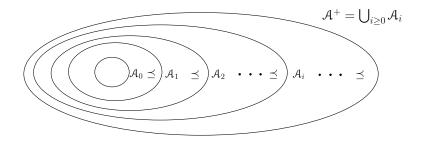
Lemma (*)



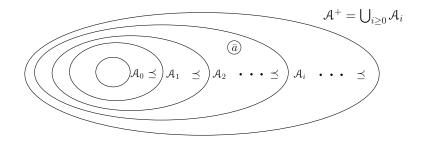
Lemma (*)



Lemma (*)

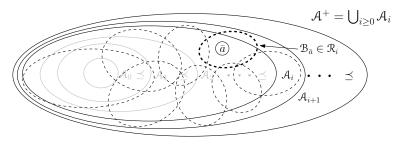


Lemma (*)



Lemma (*)

For any structure \mathcal{M} that models Γ , there exists an elementary extension \mathcal{N} of \mathcal{M} and a k-ary cover \mathcal{R} of \mathcal{M} in \mathcal{N} , consisting of models of φ .

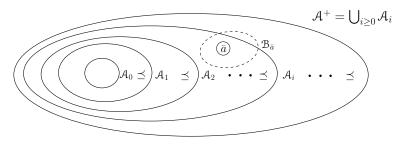


 \mathcal{R}_i is a k-ary cover of \mathcal{A}_i in \mathcal{A}_{i+1} consisting of models of φ .

ICLA '19, IIT Delhi, March 3, 2019

Lemma (*)

For any structure \mathcal{M} that models Γ , there exists an elementary extension \mathcal{N} of \mathcal{M} and a k-ary cover \mathcal{R} of \mathcal{M} in \mathcal{N} , consisting of models of φ .



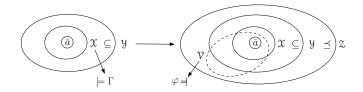
Then $\{\mathcal{B}_{\bar{a}} \mid \bar{a} \text{ is a } k \text{ tuple from } \mathcal{A}^+\}$ is a desired k-ary cover of \mathcal{A}^+ (in \mathcal{A}^+).

ICLA '19, IIT Delhi, March 3, 2019

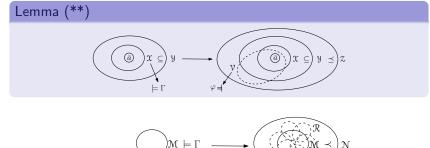
Proved using transfinite induction on the k-tuples of \mathcal{M} , and the following simple consequence of the Compactness theorem.

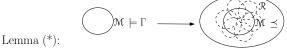
Lemma (**

Given structures $\mathfrak{X}, \mathfrak{Y}$ such that $\mathfrak{X} \models \Gamma$ and $\mathfrak{X} \subseteq \mathfrak{Y}$, and a *k*-tuple $\bar{a} \in \mathfrak{X}$, there exists $\mathfrak{Z} \succeq \mathfrak{Y}$ and $\mathcal{V} \subseteq \mathfrak{Z}$ such that $\bar{a} \in \mathcal{V}$ and $\mathcal{V} \models \varphi$.

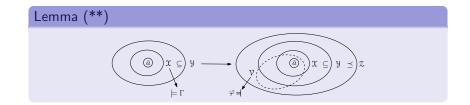


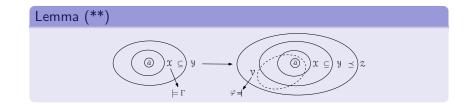


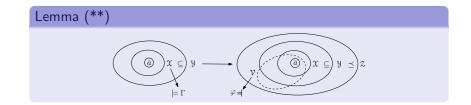


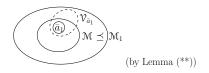


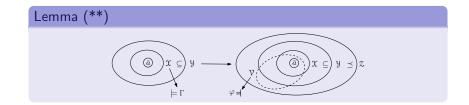
 $\label{eq:relation} \begin{array}{l} \mathcal{R} \text{ is a } k\text{-ary cover of } \mathcal{M} \text{ in } \mathcal{N} \\ \text{consisting of models of } \varphi \end{array}$

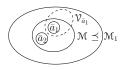


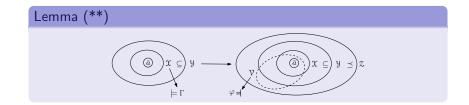


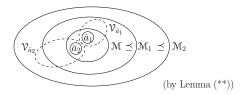


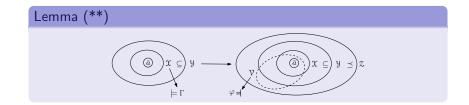


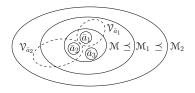


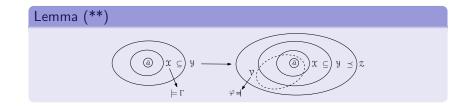


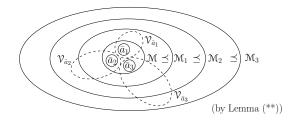


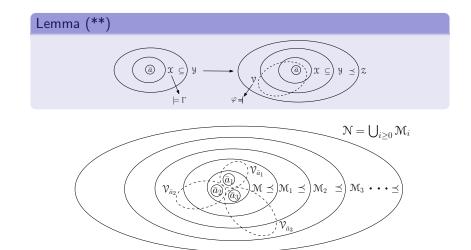












 $\{\mathcal{V}_{\bar{a}} \mid \bar{a} \text{ is a } k \text{ tuple from } \mathcal{M}\}$ is a k-ary cover of \mathcal{M} in \mathcal{N} .

A. Sankaran

ICLA '19, IIT Delhi, March 3, 2019

17/23

A relook at the Łoś-Tarski theorem in the finite

ICLA '19, IIT Delhi, March 3, 2019

Stronger failure of the Łoś-Tarski theorem in the finite

Theorem

There is a vocabulary τ such that for each $k \ge 0$, there is an FO(τ) sentence φ_k that is ext.-closed over the class S of all finite τ -structures, but is not equivalent over S, to any $\forall^k \exists^*$ sentence.

Corollary

There is an FO(τ) sentence such that is *k*-ext.-closed over S but that is not equivalent over S to any $\forall^k \exists^*$ sentence.

• We are given classes \mathcal{X} and \mathcal{Y} of structures, a single structure $\mathcal{A} \in \mathcal{X}$ and parameters k, n.

Proof approach

- We are given classes \mathcal{X} and \mathcal{Y} of structures, a single structure $\mathcal{A} \in \mathcal{X}$ and parameters k, n.
- Round 1: The Spoiler picks a k-tuple ā₀ from A. In response, the Duplicator first chooses a structure B ∈ Y, and then picks up a k-tuple b₀ from B.

- We are given classes \mathcal{X} and \mathcal{Y} of structures, a single structure $\mathcal{A} \in \mathcal{X}$ and parameters k, n.
- Round 1: The Spoiler picks a k-tuple ā₀ from A. In response, the Duplicator first chooses a structure B ∈ Y, and then picks up a k-tuple b₀ from B.
- Round 2: The Spoiler picks up an *n*-tuple \bar{b}_1 from \mathcal{B} to which the Duplicator responds by picking an *n*-tuple \bar{a}_1 from \mathcal{A} .

- We are given classes \mathcal{X} and \mathcal{Y} of structures, a single structure $\mathcal{A} \in \mathcal{X}$ and parameters k, n.
- Round 1: The Spoiler picks a k-tuple ā₀ from A. In response, the Duplicator first chooses a structure B ∈ Y, and then picks up a k-tuple b₀ from B.
- Round 2: The Spoiler picks up an *n*-tuple \bar{b}_1 from \mathcal{B} to which the Duplicator responds by picking an *n*-tuple \bar{a}_1 from \mathcal{A} .
- The Duplicator wins the above play of the game if $(\bar{a}_0, \bar{a}_1) \mapsto (\bar{b}_0, \bar{b}_1)$ is a partial isomorphism between \mathcal{A} and \mathcal{B} .

- We are given classes \mathcal{X} and \mathcal{Y} of structures, a single structure $\mathcal{A} \in \mathcal{X}$ and parameters k, n.
- Round 1: The Spoiler picks a k-tuple ā₀ from A. In response, the Duplicator first chooses a structure B ∈ Y, and then picks up a k-tuple b₀ from B.
- Round 2: The Spoiler picks up an *n*-tuple \bar{b}_1 from \mathcal{B} to which the Duplicator responds by picking an *n*-tuple \bar{a}_1 from \mathcal{A} .
- The Duplicator wins the above play of the game if $(\bar{a}_0, \bar{a}_1) \mapsto (\bar{b}_0, \bar{b}_1)$ is a partial isomorphism between \mathcal{A} and \mathcal{B} .
- The Duplicator has a winning strategy in the above game if she wins in every play of the game.

Proof approach (Contd.)

- Let $\exists^k \forall^n := \exists x_1 \dots \exists x_k \forall y_1 \dots \forall y_n \alpha(x_1, \dots, x_k, y_1, \dots, y_n).$
- Let $\mathfrak{X}, \mathfrak{Y}, k$ and n be as before, and let $\mathcal{D}(\mathcal{A})$ denote the proposition that the Duplicator has a winning strategy in the described EF game started on $\mathcal{A} \in \mathfrak{X}$.

Lemma

If $\mathcal{D}(\mathcal{A})$ holds, then for every $\exists^k \forall^n$ sentence ψ that is true on \mathcal{A} , there exists a structure $\mathcal{B} \in \mathcal{Y}$ such that ψ is true on \mathcal{B} as well.

Corollary

Let φ be a given sentence, and $\xi := \neg \varphi$. Let \mathfrak{X} and \mathfrak{Y} be resp. the models and non-models of ξ . Suppose that $\mathcal{D}(\mathcal{A})$ is true for every $\mathcal{A} \in \mathfrak{X}$. Then ξ cannot be equivalent to any $\exists^k \forall^n$ sentence, and hence φ cannot be equivalent to any $\forall^k \exists^n$ sentence.

Future work

ICLA '19, IIT Delhi, March 3, 2019

An open question

Problem

Is the Łoś-Tarski theorem true over finite undirected graphs possibly with colors? The same question for directed graphs.

Dhanyavād!

ICLA '19, IIT Delhi, March 3, 2019