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Introduction

The  Loś-Tarski theorem is a result from classical model theory
characterizing FO definable extension-closed properties in
terms of existential sentences.

Historically significant:

constituted the earliest applications of Compactness theorem
set the trend for a host of preservation theorems, for not only
FO but even its extensions

The theorem fails in the finite: there is an ext.-closed FO
sentence that is not equivalent to any existential sentence
over all finite structures.

This inspired investigating algorithmically important classes of
structures to “recover” the theorem: classes of bounded
degree, bounded tree-width, and bounded clique-width.
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The Generalized  Loś-Tarski theorem

Adsul, Chakraborty and S. proved a generalized  Loś-Tarski
theorem (GLT(k)) by introducing and characterizing a
parameterized generalization of ext.-closure.

This property called k -ext.-closure semantically characterizes
Π2 sentences whose leading block contains k quantifiers.

GLT(k) provides finer characterizations of the Π2 class than
those in the literature, further via a combinatorial notion.

Fails over all finite structures: the semantic property evades
capture by its corresponding syntactic class for each k .

Has been recovered over various classes of posets (words,
trees, nested words) and subclasses of bounded clique-width
graphs (tree-depth/shrub-depth, m-partite cographs).
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Main results of the paper

GLT(k) over arbitrary structures

A new and simpler proof of GLT(k) that avoids using λ-saturated
structures by constructing just the “required saturation”.

 Loś-Tarski theorem over finite structures

For each k , an FO sentence that is ext.-closed over all finite
structures but that is not equivalent over this class to any Π2

sentence containing k universal quantifiers.
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Some notation for the talk

∃∗ := ∃x1 . . . ∃xnα(x1, . . . , xn) for some n; α quantifier-free.

∀k∃∗ := ∀x1 . . . ∀xk∃y1 . . . ∃ynα(x1, . . . , xk , y1, . . . , yn)

Π2 :=
⋃

k≥0 ∀k∃∗
A1 ⊆ A2 := A1 is a substructure of A2.

A1 ≡ A2 := A1 and A2 agree on all FO sentences

A1 � A2 := A2 is an elementary extension of A1.
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The generalized  Loś-Tarski theorem: GLT(k)
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Classical preservation properties

Definition

A sentence ϕ is said to be extension closed if
(
A |= ϕ ∧ A ⊆ B

)
→ B |= ϕ.

E.g.: ϕ := “There is a triangle in the graph”’.

Every ∃∗ sentence is ext.-closed.

Theorem ( Loś-Tarski, 1954-55)

Over arbitrary (finite + infinite) structures, a sentence is
ext.-closed iff it is equivalent to an ∃∗ sentence.
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From ext.-closure to k -ext.-closure

Definition

For k ∈ N and a structure A, a set R of substructures of A is
called a k -ary cover of A if every set C of ≤ k elements of A is
contained in some structure of R. We call A a k -extension of R.
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From ext.-closure to k -ext.-closure

Definition

For k ∈ N and a structure A, a set R of substructures of A is
called a k -ary cover of A if every set C of ≤ k elements of A is
contained in some structure of R. We call A a k -extension of R.

Definition

A sentence ϕ is said to be k -extension closed if for each collection
R of models of ϕ, if A is a k -extension of R, then A |= ϕ.

Every ∀k∃∗ sentence is k -ext.-closed.
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The generalized  Loś-Tarski theorem: GLT(k)

Theorem (Adsul-Chakraborty-S., 2016)

Over arbitrary (finite + infinite) structures, a sentence is k -ext.
closed iff it is equivalent to a ∀k∃∗ sentence.
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Proving GLT(k)
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Proof outline for GLT(k)

Given ϕ that is k -ext. closed, let

Γ = {ψ | ψ ∈ ∀k∃∗ andϕ→ ψ}

Then ϕ→ Γ.

Show that Γ→ ϕ. Which implies ϕ↔ Γ.

By Compactness theorem, there is a finite subset Γ′ of Γ such
that ϕ↔ Γ′.

A finite conjunction of ∀k∃∗ sentences is equivalent to a ∀k∃∗
sentence. �
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Proof outline for GLT(k): showing Γ→ ϕ

A |= Γ

ϕ is k-ext. closed
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So how does one construct A+?
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Generalized k -ary covers

Instead of requiring
“self-contained”k -ary
covers, we allow for k -ary
covers of a structure in
an extension of it.

In the figure alongside,
each Bi ⊆ A+ and every
k -tuple of A is contained
in some Bi .

A+

{B1,B2,B3,B4,B5,B6} forms a k-ary cover of A in A+

A

B5

B6

B1

B2

B3

B4
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

M N�

R is a k-ary cover of M in N

R

consisting of models of ϕ

M |= Γ
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A0 = A |= Γ

A. Sankaran ICLA ’19, IIT Delhi, March 3, 2019 15/23



Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

{B1,B2,B3,B4,B5,B6} forms a k-ary cover of A in A+

A0 A1�

R0 is a k-ary cover of A0 in A1

R0

consisting of models of ϕ
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A0 |= Γ� A1
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A0 A2��

R1 is a k-ary cover of A1 in A2

R1

A1

consisting of models of ϕ
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A0 |= ΓA2� �A1

A. Sankaran ICLA ’19, IIT Delhi, March 3, 2019 15/23



Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A+ =
⋃

i≥0 Ai

A0 AiA2� � � �

ā Bā ∈ Ri

Ri is a k-ary cover of Ai in Ai+1 consisting of models of ϕ.

A1

Ai+1
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Constructing A+ using generalized k -ary covers

Lemma (*)

For any structure M that models Γ, there exists an elementary
extension N of M and a k -ary cover R of M in N, consisting of
models of ϕ.

A+ =
⋃

i≥0 Ai

A0 AiA2� � � �

ā

Then {Bā | ā is a k tuple from A+} is a desired k-ary cover of A+ (in A+).

A1

Bā
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Proof Sketch for Lemma (*)

Proved using transfinite induction on the k -tuples of M, and the
following simple consequence of the Compactness theorem.

Lemma (**)

Given structures X,Y such that X |= Γ and X ⊆ Y, and a k -tuple
ā ∈ X, there exists Z � Y and V ⊆ Z such that ā ∈ V and V |= ϕ.

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M N�

R is a k-ary cover of M in N

R

consisting of models of ϕ

M |= Γ

Lemma (*):
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M |= Γ
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M
ā1

|= Γ
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M � M1

ā1

Vā1

(by Lemma (**))
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M � M1ā2

ā1

Vā1
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M M2� �M1ā2

ā1

Vā1

Vā2

(by Lemma (**))
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M M2� �M1ā3
ā2

ā1

Vā1

Vā2
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

M M2� �M1 � M3
ā3

ā2

ā1

Vā1

Vā2

Vā3

(by Lemma (**))
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Proof Sketch for Lemma (*)

Lemma (**)

X Z⊆ �Y
V

āX ⊆ Yā

|= Γ ϕ

N =
⋃

i≥0 Mi

M M2� �M1 � M3 �
ā3

ā2

ā1

Vā1

Vā2

Vā3

{Vā | ā is a k tuple from M} is a k-ary cover of M in N.
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A relook at the  Loś-Tarski theorem in the finite
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Stronger failure of the  Loś-Tarski theorem in the finite

Theorem

There is a vocabulary τ such that for each k ≥ 0, there is an
FO(τ) sentence ϕk that is ext.-closed over the class S of all finite
τ -structures, but is not equivalent over S, to any ∀k∃∗ sentence.

Corollary

There is an FO(τ) sentence such that is k -ext.-closed over S but
that is not equivalent over S to any ∀k∃∗ sentence.
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Proof approach

We employ a variant of the classical Ehrenfeucht-Fräissé game as
defined below for parameters k ,n:

We are given classes X and Y of structures, a single structure
A ∈ X and parameters k ,n.

Round 1: The Spoiler picks a k -tuple ā0 from A. In response,
the Duplicator first chooses a structure B ∈ Y, and then picks
up a k -tuple b̄0 from B.

Round 2: The Spoiler picks up an n-tuple b̄1 from B to which
the Duplicator responds by picking an n-tuple ā1 from A.

The Duplicator wins the above play of the game if
(ā0, ā1) 7→ (b̄0, b̄1) is a partial isomorphism between A and B.

The Duplicator has a winning strategy in the above game if
she wins in every play of the game.
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the Duplicator first chooses a structure B ∈ Y, and then picks
up a k -tuple b̄0 from B.

Round 2: The Spoiler picks up an n-tuple b̄1 from B to which
the Duplicator responds by picking an n-tuple ā1 from A.
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(ā0, ā1) 7→ (b̄0, b̄1) is a partial isomorphism between A and B.

The Duplicator has a winning strategy in the above game if
she wins in every play of the game.

A. Sankaran ICLA ’19, IIT Delhi, March 3, 2019 20/23



Proof approach

We employ a variant of the classical Ehrenfeucht-Fräissé game as
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Proof approach (Contd.)

Let ∃k∀n := ∃x1 . . . ∃xk∀y1 . . . ∀ynα(x1, . . . , xk , y1, . . . , yn).

Let X,Y, k and n be as before, and let D(A) denote the proposition
that the Duplicator has a winning strategy in the described EF
game started on A ∈ X.

Lemma

If D(A) holds, then for every ∃k∀n sentence ψ that is true on A,
there exists a structure B ∈ Y such that ψ is true on B as well.

Corollary

Let ϕ be a given sentence, and ξ := ¬ϕ. Let X and Y be resp. the
models and non-models of ξ. Suppose that D(A) is true for every
A ∈ X. Then ξ cannot be equivalent to any ∃k∀n sentence, and
hence ϕ cannot be equivalent to any ∀k∃n sentence.
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Future work
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An open question

Problem

Is the  Loś-Tarski theorem true over finite undirected graphs
possibly with colors? The same question for directed graphs.
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