A Generalization of the Łoś-Tarski Preservation Theorem via Characterizations of Σ_n and Π_n Theories

Abhisekh Sankaran

IIT Bombay

Logic Symposium, IISER, Pune June 24, 2014

Introduction

- A preservation theorem characterizes (definable) classes of structures closed under a given model theoretic operation.
- Preservation under substructures/extensions the Łoś-Tarski theorem (1949-50).
- The Łoś-Tarski theorem gives semantic characterizations of Π_1 and Σ_1 theories.
- Subsequent characterizations of Π₂ theories in terms of preservation under of ascending chains, intersections of descending chains, intersections of submodels, etc.
- Uniform set of preservation theorems characterizing Π_n and Σ_n theories for all $n \ge 1$, provided by H. J. Keisler in 1960.

Talk Outline and Assumptions for the talk

Talk Outline:

- The Łoś-Tarski theorem
- Σ_n -substructures/ Σ_n -extensions
- The generalized Łoś-Tarski theorem
- Keisler's theorem
- Comparison

Assumptions:

- First Order (FO) theories.
- Arbitrary vocabularies (constants, predicates and functions)
- Arbitrary structures

•
$$\Sigma_1 = \exists^*(\ldots), \Pi_1 = \forall^*(\ldots)$$

 $\Sigma_n = \exists^*\forall^* \cdots (n\text{-blocks}); \Pi_n = \forall^*\exists^* \cdots (n\text{-blocks})$

- Substructure/Extension, $\mathfrak{A} \subseteq \mathfrak{B}$: similar to induced subgraph.
- Isomorphism, $\mathfrak{A} \cong \mathfrak{B}$: Standard notion.
- Elementary equivalence, $\mathfrak{A} \equiv \mathfrak{B}$: Indistinguishable by FO.
- Elementary substructure/elementary extension, A ≤ B: (i)
 A ⊆ B and (ii) for every FO formula φ(x₁,...,x_n) and every n-tuple ā from A, we have A ⊨ φ(ā) iff B ⊨ φ(ā).
- $\mathfrak{A} \Rightarrow_n \mathfrak{B}$: every Σ_n sentence true in \mathfrak{A} is also true in \mathfrak{B} .
- Σ_n -theory(\mathfrak{A}): set of all Σ_n sentences true in \mathfrak{A} .

The Łoś-Tarski theorem

Definition 1 (Pres. under subst.)

A theory T is said to be preserved under substructures, abbreviated T is PS, if $((M \models T) \land (N \subseteq M)) \rightarrow N \models T$.

- E.g.: Consider $\phi_n = \neg \exists x_1 \dots \exists x_n (E(x_1, x_2) \land \dots E(x_n, x_1))$ expresses the absence of a cycle of length n.
- Then $T = \{\phi_n \mid n \ge 1\}$ expresses acyclicity. Any induced subgraph of an acyclic graph is also acyclic. Then T is PS.
- In general, every Π_1 theory is PS.

Theorem 1 (Łoś-Tarski, 1949-50)

A FO theory is PS iff it is equivalent to a Π_1 theory.

Definition 2 (Pres. under ext.)

A theory T is said to be preserved under extensions, abbreviated T is PE, if $((M \models T) \land (M \subseteq N)) \rightarrow N \models T$.

- E.g.: If $\psi_n = \neg \phi_n$ where ϕ_n is as before, then $T = \{\psi_n \mid n \ge 1\}$ asserts the presence of cycles of all lengths. Clearly T is PE.
- In general, every Σ_1 theory is PE.

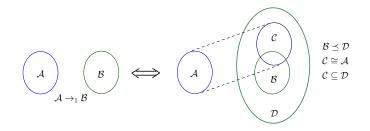
Theorem 2 (Łoś-Tarski, 1949-50)

A FO theory is PE iff it is equivalent to a Σ_1 theory.

Following is a key theorem used in the proof.

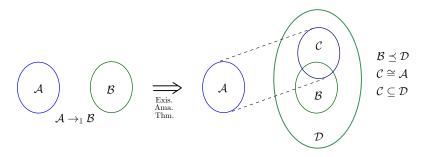
Theorem 3 (Existential Amalgamation Theorem)

 $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$ iff there exist structures \mathfrak{C} and \mathfrak{D} s.t. (i) $\mathfrak{B} \preceq \mathfrak{D}$ (ii) $\mathfrak{C} \cong \mathfrak{A}$ and (iii) $\mathfrak{C} \subseteq \mathfrak{D}$.



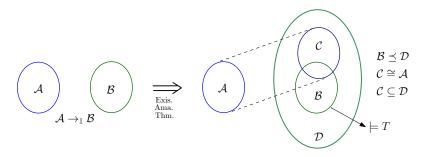
- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)

- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)

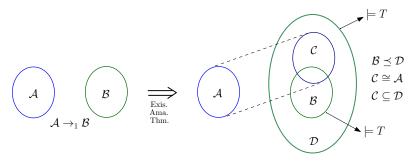


Logic Symposium, June 24, 2014

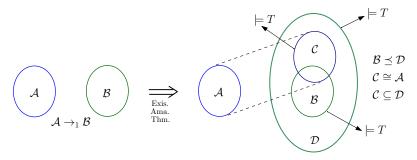
- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)



- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)

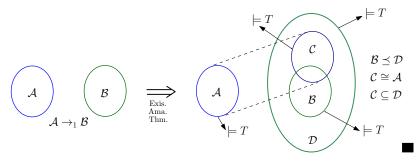


- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)



Logic Symposium, June 24, 2014

- Suppose T is PS. Let $\Gamma = \text{set of all } \Pi_1 \text{ consequences of } T$. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_1 \mathfrak{B}$. (by showing that $T \cup \Sigma_1$ -theory(\mathfrak{A}) is sat.)



Logic Symposium, June 24, 2014

Σ_n -substructures and Σ_n -extensions

Σ_n -substructures and Σ_n -extensions

- Suppose $\mathfrak{A} \subseteq \mathfrak{B}$. Then observe the following property of \subseteq : for every Σ_1 formula $\varphi(x_1, \ldots, x_r)$ and every *r*-tuple \bar{a} from \mathfrak{A} , we have $\mathfrak{A} \models \varphi(\bar{a}) \rightarrow \mathfrak{B} \models \varphi(\bar{a})$.
- A natural generalization of the above property consider Σ_n formulas instead of Σ₁ formulas.

Definition 3 (From literature)

We say \mathfrak{A} is a Σ_n -substructure of \mathfrak{B} , denoted $\mathfrak{A} \subseteq_n \mathfrak{B}$ if (i) $\mathfrak{A} \subseteq \mathfrak{B}$ and (ii) for every Σ_n formula $\varphi(x_1, \ldots, x_r)$ and every r-tuple \overline{a} from \mathfrak{A} , we have $\mathfrak{A} \models \varphi(\overline{a}) \rightarrow \mathfrak{B} \models \varphi(\overline{a})$. If $\mathfrak{A} \subseteq_n \mathfrak{B}$, then we say \mathfrak{B} is a Σ_n -extension of \mathfrak{A} .

The Generalized Łoś-Tarski Theorem

Preservation under Σ_n -substructures and Preservation under Σ_n -extensions

Definition 4

- A theory T is said to be
 - preserved under Σ_n -substructures, abbreviated T is PS_n , if $((M \models T) \land (N \subseteq_n M)) \rightarrow N \models T$.
 - preserved under Σ_n -extensions, abbreviated T is PE_n , if $((M \models T) \land (M \subseteq_n N)) \rightarrow N \models T$.
 - Easy to check that (i) T is PS_1 iff T is PS (ii) T is PE_1 iff T is PE.
 - Easy to check that (i) Π_n theories are PS_n (ii) Σ_n theories are PE_n .

Theorem 4 (Substructural version)

A FO theory is PS_n iff it is equivalent to a Π_n theory.

Theorem 5 (Extensional version)

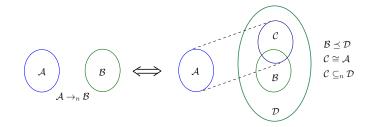
A FO theory is PE_n iff it is equivalent to a Σ_n theory.

The case of n = 1 is exactly the Łoś-Tarski theorem.

Following generalization of the Exis. Ama. Thm. is key for the proof.

Theorem 6 (Σ_n -Amalgamation Theorem)

 $\mathfrak{A} \Rightarrow_n \mathfrak{B}$ iff there exist structures \mathfrak{C} and \mathfrak{D} s.t. (i) $\mathfrak{B} \preceq \mathfrak{D}$ (ii) $\mathfrak{C} \cong \mathfrak{A}$ and (iii) $\mathfrak{C} \subseteq_n \mathfrak{D}$.

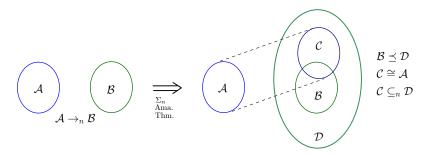


(Proof of subst. version)

- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)

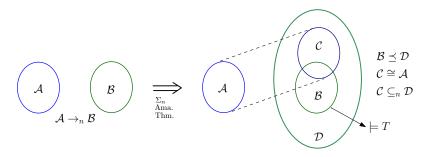
(Proof of subst. version)

- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)



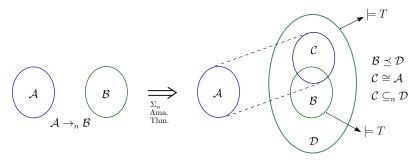
(Proof of subst. version)

- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)



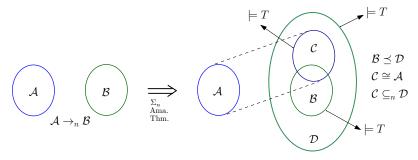
(Proof of subst. version)

- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)



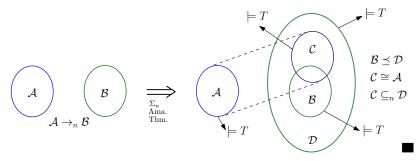
(Proof of subst. version)

- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)



(Proof of subst. version)

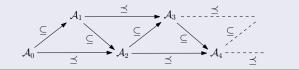
- Suppose T is PS_n . Let Γ = set of all Π_n consequences of T. We show that $T \leftrightarrow \Gamma$. Clearly T entails Γ .
- Conversely, suppose $\mathfrak{A} \models \Gamma$. Show that there is a model \mathfrak{B} of T s.t. $\mathfrak{A} \Rightarrow_n \mathfrak{B}$. (by showing that $T \cup \Sigma_n$ -theory(\mathfrak{A}) is sat.)



Keisler's Theorem

Definition 5

For $0 < n < \omega$, a sequence of structures $\mathfrak{A}_0, \ldots, \mathfrak{A}_n$ is said to be a sandwich of order n if the structures are related as below:



Definition 6

- $\mathfrak{B} \in n$ -Sand(\mathfrak{A}) iff \mathfrak{B} and \mathfrak{A} are (in order) the first two elements of a sandwich of order n.
- $\mathfrak{B} \in n$ -Sand-by(\mathfrak{A}) iff \mathfrak{A} and \mathfrak{B}' are (in order) the first two elements of a sandwich of order n, for some \mathfrak{B}' s.t. $\mathfrak{B} \preceq \mathfrak{B}'$.

Preservation under n-Sand and Preservation under n-Sand-by

Definition 7

A theory T is preserved under n-Sand (resp. n-Sand-by) if for all models \mathfrak{A} of T, if \mathfrak{B} belongs to n-Sand(\mathfrak{A}) (resp. n-Sand-by(\mathfrak{A})), then \mathfrak{B} models T.

- All Π_n sentences are pres. under *n*-Sand and Σ_n sentences are pres. under *n*-Sand-by.
- Observe that (i) T is pres. under 1-Sand iff T is PS (ii) T is pres. under 1-Sand-by iff T is PE.

Keisler's Generalization of Łoś-Tarski Theorem

Theorem 7

An FO theory is preserved under n-Sand iff it is equivalent to a Π_n theory.

Theorem 8

An FO theory is preserved under *n*-Sand-by iff it is equivalent to a Σ_n theory.

The case of n = 1 is exactly the Łoś-Tarski theorem.

Comparisons

Comparison between the two generalizations of the Łoś-Tarski theorem

- Clearly the notions of PS_n and PE_n are much simpler and easier to state than pres. under *n*-Sand and pres. under *n*-Sand-by.
- The proof of the generalization of the Łoś-Tarski theorem via PS_n and PE_n uses straightforward liftings of the ideas already contained in the standard proof of the Łoś-Tarski theorem.
- The proof of generalization via sandwiches is quite involved.

Relation between $\boldsymbol{\Sigma}_n\text{-substructures}$ and sandwiches of order n

Proposition 1

 $\mathfrak{A} \subseteq_n \mathfrak{B}$ iff $\mathfrak{A} \in n$ -Sand (\mathfrak{B}) .

Following is a slight generalization of a result from [Chang-Keisler].

Proposition 2

 $\mathfrak{A} \in n$ -Sand(\mathfrak{B}) iff there is a sequence of n + 1 structures $\mathfrak{A}_0 \subseteq \mathfrak{B}_0 \subseteq \mathfrak{A}_1 \subseteq \mathfrak{B}_1 \dots$ such that (i) $\mathfrak{A}_0 = \mathfrak{A}$, $\mathfrak{B}_0 = \mathfrak{B}$, and (ii) each \mathfrak{B}_{k+1} (resp. \mathfrak{A}_{k+1}) is isomorphic to an ultrapower of \mathfrak{B}_k (resp. \mathfrak{A}_k), for $0 \leq k \leq n$.

Using the above propositions, we get a purely algebraic (i.e. without any reference to logic) formulation of ⊆_n.

Thank You!

References I

- C. C. Chang and H. J. Keisler, *Model Theory*, Elsevier Science Publishers, 3rd edition, 1990.
- W. Hodges, *A Shorter Model Theory*, Cambridge University Press, 1997.
- H. J. Keisler, Theory of models with generalized atomic formulas, *Journal of Symbolic Logic*, 25:1-26, 1960.